The Sunspot Cycle

- Caused by cyclical change in Sun's magnetic field.
- field reverses polarity each 11 years $\rightarrow 22$ year cycle.
- reverses polarity of leading spots in pairs.

$1^{\text {st }} 11$-year cycle

Next 11-year cycle

Magnetic field lines of force

- Sunspots are a detail showing how the Sun’s magnetic field is leaking out of the zones just below the Sun's surface.
- Magnetic field produced in outer 30% of Sun’s radius.

Solar activity: flares affect Earth.

What causes the solar cycle?

- Differential rotation of Sun’s outer layers
- 24 days at equator.
- 30 days at pole.
- reason not understood.
- "Winds up" magnetic

(a)

(b) field
- field reverses each 11 yrs, when it gets too wound up.
- causes 22-year cycle.
- but why this reversal??? We don't know.

[Fig 10.20]

(d)

Other Stars

- Clicker question: Which of the following things did we NOT need to know about the Sun in order to compute an accurate model of its interior?
A. Chemical composition
B. Luminosity
C. Mass
D. Diameter
E. We needed to know all of the above

Finding the luminosity [11.1]

Luminosity $=$ Energy/unit time

- But we measure flux incident
on Earth (apparent brightness)
= Energy/unit time /unit area
Also must know distance r
- For nearby stars, use parallax:

[Fig. 11.3]

Stellar masses

- Binary stars
- Use Newton's form of Kepler's 3rd law:

Mass - Luminosity Relation

- Key observational result for theoretical interpretation of different types of stars.

Finding the star's diameter
[Fig. 5.11]

- Total energy emitted per unit surface area

Stefan-Boltzmann Law: $\quad \mathrm{E}=\sigma \mathrm{T}^{4}$

- Total energy from whole star:

Luminosity $\mathrm{L}=\mathrm{Ex}$ (surface area) $=\left(\sigma \mathrm{T}^{4}\right) \times\left(\pi \mathrm{D}^{2}\right)$

Taking a star's (surface) temperature

Two Ways:

- Thermal radiation curve
- Spectroscopy

Wavelength \rightarrow
Spectra of different stars look different.

Finding the star's diameter
[Fig. 5.11]

- Total energy emitted per unit surface area
$\begin{array}{lc}\text { Stefan-Boltzmann Law: } & \mathrm{E}=\sigma \mathrm{T}^{4} \\ \text { tal energy from whole star: } & ,\end{array}$
- Total energy from whole star:

Luminosity \quad| $\mathrm{L}=\mathrm{E} \times$ (surface area) $=\left(\sigma \mathrm{T}^{4}\right) \times\left(\pi \mathrm{D}^{2}\right)$ |
| :--- |
| We measure L and T , then solve for D |

