

Possible ending #1: a white dwarf

Electron degeneracy \rightarrow pressure to support star up to 1.4 M $_{\odot}$.

Possible ending #2: a neutron star

If degenerate electron pressure *cannot* support the star:

 $e^{-} + p^{+} \rightarrow n + neutrinos$

- Still denser state of matter than electron degeneracy.
 - Sun: 1,000,000 km diameter
 - White dwarf: 10,000 km (~ same diameter as Earth)
 - Neutron star: 20 km
- Degenerate pressure of neutrons can support stars up to $3M_{\odot}$

Possible ending #1: a white dwarf

Electron degeneracy \rightarrow pressure to support star up to 1.4 M_{\odot}.

Possible ending #2: a neutron star

If degenerate electron pressure *cannot* support the star:

$e^{-} + p^{+} \rightarrow n + neutrinos$

- Degenerate pressure of neutrons can support stars up to $3 M_{\odot}$

Possible ending #3: a black hole

- Complete collapse
- Will be described in next lecture

• For $M > 7-8 M_{\odot}$, stars end up with iron cores

→ No further nuclear burning possible

- Core eventually becomes too massive to be held up by degenerate electron pressure:
 - e⁻ + p → n
 - Sudden core collapse: 10⁴ km → 20 km
 - Then core rebounds
 - Outer layers fall in, then get hit by rebounding core.

