Newton

Gravity = a "force" between objects with mass

$$
F_{\text {gravity }}=\frac{G m_{1} m_{2}}{r^{2}}
$$

General Relativity

- Worked out in 1907-1915
- Consistent with (incorporates) special relativity
- Describes motions of objects in presence of gravity
- Gravity = curvature of spacetime.

[see Fig 13.12]

Announcements:

- Today's slides are on the web.
- Midterm 3 study guide now on web.
- Hwk 6 due on Monday evening.
- Midterm 3 on Wednesday.

Spacetime

- Cross-talk between space \& time
\Rightarrow think of time as $4^{\text {th }}$ dimension.
- But time is still different from space.
- Special Relativity:
- 1 time-like, 3 space-like dimensions.

How many space-like dimensions do we live in?

- General Relativity
- Space-time
- But 3D space = "surface" in a 4D space
- Use easily visualized analogy
- 2D surface in a 3D space

- Imagine a bug constrained to that 2D surface
- Doesn't know $3^{\text {rd }}$ dimension exists.

Euclid \& Friend go exploring

Parallel lines...
do funny things in curved geometries.

Einstein, on
 "the happiest thought of my life"...

I was sitting in the patent office at Bern when all of a sudden a thought occurred to me:
"If a person falls freely he will not feel his own weight." *

[^0]
The Principle of Equivalence

- A thought experiment: falling elevators.

Gravity

Upwards acceleration, no gravity.

Falling due
No gravity to gravity

- Can’t tell difference between gravity \& acceleration
- ...or between freefall \& no gravity.
- So any experiment should give same answer in either case.

The Equivalence Principle at Work

[^0]: $*_{\text {Or something like that in } \mathfrak{G e r m a n} \text {. }}$

