Study Guide – Midterm 3

Exam procedures

- Sit in assigned row, as for previous midterms.
- As before, a seating chart will be displayed on the screen when you enter the room.
- A person-by-person list of row assignments will be posted on the wall by the door.
- Photo-ID required.
- Closed book, closed notes. No calculators, cell-phones, etc.

What to Know

- You should know about all of the things I have discussed in class.
- This study guide just gives some of the high points.
- Study your lecture notes first, then use your textbook to help you understand your notes.
- There will some questions similar to those on the homework assignments.

Some general ideas that you should understand:

- What is the energy source of the Sun? Of other stars?
- How do we know what goes on inside of the Sun and other stars?
- In what ways do stars change during their lifetimes? What simple fact means that they *must* evolve (i.e. change their interior structure)?
- You should know what the H-R diagram shows, and why it is such an important tool in astronomy.
- How do you find the age of a star cluster? What is the basic principle?
- What are the three possible end states of a star's life? What determines which end state befalls a particular star?
- The basic ideas of General Relativity, and the tests that show that General Relativity describes gravity better than does Newton's Law of Gravity.

Some specific numbers to know:

- Age of the Sun (= age of solar system) = 4.5 billion yrs.
- Predicted lifetime of Sun's core H-burning phase = 10-11 billion years (depends on exactly what you specify as the end-point).

Photosphere

- Deepest layer from which light directly escapes into space.
- Low density and pressure (10⁻⁴, 0.1 x Earth's surface values)
- But *hot* (5800° K) ullet
- Granules (in photosphere)
 - Tops of convection currents.
- Chromosphere
 - Transparent gas layer, reaches 2000-3000 km above photosphere.
 - T ~5,000-10,000° K ullet
 - Photosphere = point we can no longer see through chromosphere.
- Corona
 - $T > 1,000,000^{\circ} K$
 - Very low density: 10⁻¹⁰ atmospheres.
 - Heated by magnetic energy. •
 - Several x diameter of photosphere.

Magnetic Fields Control Much of Sun's Surface Activity

What Powers the Sun?

• Need to provide

4 x

- $4x10^{26}$ watts
- $< 2x10^{33}$ grams (mass of Sun)
- > 4.5 billion years (age of Earth)
- Nuclear fusion reactions:
 - $4 \times {}^{1}H \rightarrow {}^{4}He + neutrinos + energy$

Helium: ⁴He

Computer simulations of stars

We can measure:

- Luminosity
- Mass
- Size
- Chemical composition

Computer "models" assuming:

- Made of gas.
- Neither contracting nor expanding.
- Neither heating up nor cooling down.
- Specify method of energy transfer.

- Internal structure.
- Which nuclear reactions generate energy at what points.
- Lifetimes.

The interior of the Sun

Here's what we observe about stars.

Stars go through series of nuclear reactions:

Reaction	Min. Temp.	
$4 {}^{1}\text{H} \rightarrow {}^{4}\text{He}$	10 ⁷ ° K	
$3 {}^{4}\text{He} \rightarrow {}^{12}\text{C}$	2x10 ⁸	
$^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O}$, Ne, Na, Mg	8x10 ⁸	
Ne ➔ O, Mg	1.5x10 ⁹	
O ➔ Mg, S	2x10 ⁹	
Si → Fe peak	3x10 ⁹	

Predicted paths of stars on HR diagram

Lifetime

- = (amount of fuel)/(rate of consumption)
- Massive stars have very short lifetimes.
- Old stars last a very long time.

Star clusters are snapshots of stellar evolution

- All stars in a given cluster formed at ~ same time.
- But with a wide range in masses.
- Main sequence turnoff

= stars just finishing main sequence evolution.

To see how it all works, look at:

http://www.mhhe.com/physsci/astronomy/applets/Hr/frame.html <u>applet</u> http://www.pa.msu.edu/courses/isp205/sec-1/hr.mpg <u>movie</u>

Stellar Evolution

Here: Evolution through		Mass loss:	There: Final state.	
	Nuclear hurning all		${ m M_{final}}$ > ${ m 3M}_{\odot}$	Black hole.
IVI _{initial} > 0IVI _O	the way to iron.		$1.4 < M_{final} < 3M_{\odot}$	Neutron star.
$M_{initial} < 8M_{\odot}$	Nuclear burning	• Planetary		
	shuts off after He	nebulae	${ m M_{final}}$ < 1.4 ${ m M_{\odot}}$	White dwarf.
	burning.	Supernovae		

Planets around other stars

- Star formation \rightarrow disks around stars
 - Planets form in these disks.
 - Over 250 known
 - Usually detected through their effect on motion of the parent star.
- Earth mass planet in "habitable zone" would be the real prize. *Why?*
- Most Earth-like planet so far = 3 Earth masses, found by "gravitational lensing". *What is grav. lensing*?

General Relativity

- Gravity = "curvature" in space.
 - Photons, planets etc follow shortest paths through curved space.
 - Analogy: 2D bug on surface that curves into an extra (3rd) dimension.
- Einstein's starting point: Equivalence Principle
 - Can't tell difference between gravity & acceleration
 - ... or between freefall & no gravity.
 - So *any* experiment should give same answer in either case.
- Many proofs that General Relativity is the better description:
 - Curved path of starlight as it passes through Sun's gravitational field.
 - "Precession" (gradual change in direction of major axis) of orbit Mercury.
 - Time slows down in strong grav. field.... even GPS systems are affected.
- Black Holes
 - Gravity so strong that escape velocity exceeds speed of light.
 - So light falls back.
 - "Schwarzschild radius" or "event horizon" = radius around mass concentration within which light can no longer escape to outside.

