
Problem T4

Consider the following common source JFET amplifier circuit. Assume that $V_{DD}=10~V$ and that the average value of I_D is 4.0 mA. Moreover, assume that the voltage difference between the gate and source is $V_{GS}=-1.5~V$ and that the transconductance under these conditions is $g_m=1.5~mhos$.

- (a) Calculate the value of R_D will that will result in gain of $|\Delta V_D/\Delta V_G| = 500$.
- (b) Assume that R_G is sufficiently small so that the average voltage at the gate is approximately zero. Find the value of R_S necessary to give $V_{GS} = -1.5 \ V$.
- (c) Calculate an appropriate value for C_S if the minimum operating frequency is 100 Hz.
- (d) Given your values of R_D and R_S , what is the average voltage at point Y.
- (e) Assume that the input and output capacitors are sufficiently large to pass 100% of the AC signal at ω =1000 radians/s. Given that V_{in} =0.002 cos ω t, plot V_{out} and I_D as a function of time t (using your values of R_D and R_S).