LECTURE #9

BRAVAIS LATTICES

ARRANGEMENT OF ATOMS IN SPACE WITH THE FOLLOWING PROPERTIES

1. SAME "VIEW" WHEN MOVE FROM ONE ATOM TO A DIFFERENT ONE

2. \[\mathbf{R}^0 = m_1 \mathbf{a}_1 + m_2 \mathbf{a}_2 + m_3 \mathbf{a}_3 \]

\[m_1, m_2, m_3 \in \mathbb{Z} \] (INTER)

\[\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \] 3 NON PARALLEL \text{ PRIMITIVE VECTORS} \text{ (IN GENERAL)}
2D

Not a Bravais lattice

3D

Cubic

Body centered cubic

Face centered cubic

BCC
PRIMITIVE UNIT CELL

PRIMITIVE UNIT CELL

1 ATOM / UNIT CELL

"DENSITY" = \frac{1}{\text{AREA OF UNIT CELL}}

WIGNER-SEITZ CELL = UNIT CELL WITH ATOM AT THE CENTER

"VORONOI" PARTITION OF SPACE
WS cell for BCC

Truncated octahedron

WS for Fcc

Rhombic dodecahedron
LATTICE WITH BASIS

- BRAVAIS A
- BRAVAIS B

PRIMITIVE VECTORS

\[\vec{a}_1, \vec{a}_2 \]

- \[\vec{b}_A = 0 \]
- \[\vec{b}_B = (a_1, 0) \]

\[\vec{a}_1, \vec{a}_2, \vec{a}_3 \] FCC

- \[\vec{b}_A = 0 \]
- \[\vec{b}_B = \frac{a}{4} (1, 1, 1) \]

C - Si, -Ge
GaAs

A → Ga
B → As

\{ Zinc Blend Lattice \}

(\text{ZnS} \}

\text{Hexagonal Lattice}

\text{Hexagonal Lattice 3D}

\text{Bravais}

\text{Bravais
HEXAGONAL CLOSED PACKED HCP

\[\mathbf{b}_A = \mathbf{0} \]

\[\mathbf{b}_B = \frac{\mathbf{a}_1}{3} + \frac{\mathbf{a}_2}{3} + \frac{\mathbf{a}_3}{2} \]