Riemann-Christoffel curvature tensor-23 Mar 2010

- Reading: Weinberg Gravitation \& Cosmology, §6 and Hartle §21.3
- Outline
- Finish covariant derivatives
- Riemann-Christoffel curvature tensor
- Bianchi identity

2 W08EinsteinEqns.nb

Covariant derivative of a contravariant vector

How do you take derivatives of tensors?

We already found that the equation of motion is

$$
\frac{d u^{\alpha}}{d \tau}+\Gamma^{\alpha}{ }_{\beta \gamma} u^{\beta} u^{\gamma}=0
$$

The terms $\frac{d u^{\alpha}}{d \tau}$ and $\Gamma^{\alpha}{ }_{\beta \gamma} u^{\beta} u^{\gamma}$ are not tensors. Proof: $\Gamma^{\alpha}{ }_{\beta \gamma} u^{\beta} u^{\gamma}$ is zero in a gravity-free frame. If it were a tensor, it must be zero in all frames.

We derived the equation of motion by differentiating the 4 -velocity.
Rewrite

$$
\frac{d u^{\alpha}}{d \tau}=\frac{d x^{\beta}}{d \tau} \frac{\partial u^{\alpha}}{\partial x^{\beta}}=u^{\beta} \frac{\partial u^{\alpha}}{\partial x^{\beta}}
$$

and insert to get

$$
u^{\beta}\left(\frac{\partial u^{\alpha}}{\partial x^{\beta}}+\Gamma_{\beta \gamma}^{\alpha} u^{\gamma}\right)=0
$$

This says: In the parenthesis is the change in u^{α} in the x^{β} direction. Contracting it (taking the dot product) with u^{β} results in 0 .
Contraction is a tensor operation. $\frac{\partial u^{\alpha}}{\partial x^{\beta}}+\Gamma^{\alpha}{ }_{\beta \gamma} u^{\gamma}$ is a tensor.
For any contravarient vector A^{α},

$$
\nabla_{\beta} A^{\alpha}=\frac{\partial A^{\alpha}}{\partial x^{\beta}}+\Gamma^{\alpha}{ }_{\beta \gamma} A^{\gamma}
$$

is a tensor. This is called the covariant derivative. Another notation:

$$
A^{\alpha}{ }_{; \beta}=A^{\alpha}{ }_{, \beta}+\Gamma^{\alpha}{ }_{\beta \gamma} A^{\gamma}
$$

$\mathrm{Q}:$ Is $A^{\alpha}{ }_{; \beta} \equiv \nabla_{\beta} A^{\alpha}$ covariant or contravarient in the index β ?

xxx

Example: For 2-dimensional polar coordinates, the metric is

$$
\mathrm{ds}^{2}=\mathrm{dr}^{2}+r^{2} \mathrm{~d} \theta^{2}
$$

The non-zero Christoffel symbols are (8.17)

$$
\begin{aligned}
& \Gamma_{\theta \theta}^{r}=-r \\
& \Gamma_{\theta r}^{\theta}=\Gamma_{r \theta}^{\theta}=1 / r . \\
& A_{; r}^{r}=A^{r}{ }_{, r}
\end{aligned}
$$

$$
\begin{aligned}
& A^{r}{ }_{; \theta}=A^{r}{ }_{, \theta}-r A^{\theta} \\
& A^{\theta}{ }_{; r}=A^{\theta}{ }_{, r}+1 / r A^{\theta} \\
& A^{\theta} ; \theta=A^{\theta}{ }_{, \theta}+1 / r A^{r}
\end{aligned}
$$

The covariant derivative of the r component in the r direction is the regular derivative. If a vector field is constant, then $A_{; r}^{r}=0$. The covariant derivative of the r component in the θ direction is the regular derivative plus another term. Even if a vector field is constant, $A_{; \theta}^{r} \neq 0$. The Γ term accounts for the change in the coordinates.

The idea of a covariant derivative of a vector field A in the direction a. Is this a good definition?

$$
\nabla_{a} A^{\alpha}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}[A(x+\epsilon a)-A(x)] \text { ??? }
$$

However, the components of $A(x+\epsilon a)$ may be different even if the vector is the same, because the coordinates are changing. We must move $A(x+\epsilon a)$ back to x before comparing. Moving is called parallel transporting. This is what the Γ term does.

$$
\nabla_{a} A^{\alpha}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\{\text { parallel transport }[A(x+\epsilon a)]-A(x)\}
$$

Q: Simplicio: Covariant derivatives are irrelavant. I want to know about gravity. In what way is Simplicio mistaken?

Covariant derivative of a tensor

A contravariant tensor is $A^{\mu} B^{\nu}$. The covariant derivative of it is

$$
\begin{aligned}
& \left(A^{\mu} B^{v}\right)_{; \alpha}=A^{\mu}\left(B^{v}\right)_{; \alpha}+\left(A^{\mu}\right)_{; \alpha} B^{v} \\
& =A^{\mu}\left(B_{{ }_{, \alpha}}^{v}+\Gamma_{\beta \alpha}^{v} B^{\beta}\right)+B^{v}\left(A^{\mu}{ }_{, \alpha}+\Gamma_{\beta \alpha}^{\mu} A^{\beta}\right) \\
& =\left(A^{\mu} B^{v}\right)_{, \alpha}+A^{\mu} B^{\beta} \Gamma_{\beta \alpha}^{v}+B^{v} A^{\beta} \Gamma_{\beta \alpha}^{\mu}
\end{aligned}
$$

Therefore the covariant derivative of a contravariant tensor is

$$
T^{\mu v}{ }_{; \alpha}=T_{, \alpha}^{\mu v}+T^{\mu \beta} \Gamma_{\beta \alpha}^{v}+T^{\beta v} \Gamma_{\beta \alpha}^{\mu}
$$

There is one Christoffel symbol for each upper index.

The covariant derivative of a covariant vector is

$$
A_{\alpha ; \beta}=A_{\alpha, \beta}-\Gamma^{\gamma}{ }_{\alpha \beta} A_{\gamma}
$$

Proof: Find the covariant derivative of $A_{\alpha} A^{\alpha}$.
The covariant derivative of a mixed tensor: Put in $+\Gamma$ for each upper index and $-\Gamma$ for each lower index.

How to measure curvature

Q: In what object is gravity encoded? What does the Equivalence Principle say?

Q: Can you measure curvature by looking at a point?

How to measure curvature

Q: In what object is gravity encoded? What does the Equivalence Principle say? Gravity is encoded in a general coordinate transformation.

Q: Can you measure curvature by looking at a point? No. The equivalence principle says that gravity can be removed in a small region of space-time by a coordinate transformation. You must explore a region that is not small.

Q: How to detect curvature of the Earth's surface.
Carry a vector, which points east, from the north pole to the equator.

Consider a vector field A_{γ}. Move from point P to Q to R . Move from P to S to R. Compare.

The change in A in going from P to Q is

$$
\mathrm{dA}_{\gamma \mathrm{PQ}}=\left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}\right) a^{\alpha}
$$

Q: Why is this not a tensor equation?

```
ln[54]:= fig[] := Module[{p, q, r, s, x},
        p={0,0};q={1, 0};s={.2,1};r={1.2,1};
        x = {p,q,r, s};
        ListPlot [x, PlotStyle }->\mathrm{ {PointSize }->\mathrm{ Large},
        Epilog -> {Text["P", p, {-3, -1}], Text["Q", q, {2, -1}], Text["S", s, {-2, 1}],
            Text["R", r, {3, 1}], Text["a", Mean@{x\llbracket1\rrbracket, x\llbracket2\rrbracket}, {0, -1}],
            Text["b", Mean@{x\llbracket1\rrbracket, x\llbracket4\rrbracket}, {-2.5, 0}], Arrow[{x\llbracket1\rrbracket, x\llbracket2\rrbracket}], Arrow[{x\llbracket2\rrbracket, x\llbracket3\rrbracket}],
            Arrow[{x\llbracket1\rrbracket, x\llbracket4\rrbracket}], Arrow[{x\llbracket4\rrbracket, x\llbracket3\rrbracket}]}, bs, Axes }->\mathrm{ None, ImageSize }->\mathrm{ 160]
        ]
ln[5]]:= fig[]
```


How to measure curvature

Consider a vector field A_{γ}. Move from point P to Q to R . Move from P to S to R. Compare.

The change in A_{γ} in going from P to Q is

$$
d A_{\gamma \mathrm{PQ}}=\left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}\right) a^{\alpha}
$$

Q: Why is this not a tensor equation? The derivative of a vector field is not a tensor. Use the covarient derivative

$$
\nabla_{\alpha} A_{\gamma}=\frac{\partial A_{\gamma}}{\partial x^{\alpha}}-\Gamma^{\sigma}{ }_{\gamma \alpha} A_{\sigma}
$$

This is a tensor equation:

$$
d A_{\gamma \mathrm{PQ}}=\nabla_{\alpha} A_{\gamma} a^{\alpha}
$$

The change in A in going $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R}$ is

$$
d \mathrm{~A} \gamma_{\mathrm{PQR}}=\nabla_{\beta}\left(\nabla_{\alpha} A_{\gamma}\right) a^{\alpha} b^{\beta}
$$

The change in A in going $\mathrm{P} \rightarrow \mathrm{S} \rightarrow \mathrm{R}$ is
$d A_{\gamma \mathrm{PSR}}=\nabla_{\alpha}\left(\nabla_{\beta} A_{\gamma}\right) a^{\alpha} b^{\beta}$
The change in a round trip $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R} \rightarrow \mathrm{S} \rightarrow \mathrm{P}$ is

$$
d A_{\gamma \mathrm{PQR}}-d A_{\gamma \mathrm{PSR}}=\left[\nabla_{\beta}\left(\nabla_{\alpha} A_{\gamma}\right)-\nabla_{\alpha}\left(\nabla_{\beta} A_{\gamma}\right)\right] a^{\alpha} b^{\beta}
$$

Q: In MA1, I learned that $\frac{\partial^{2}}{\partial x \partial y}=\frac{\partial^{2}}{\partial y \partial x}$. Why doesn't the quantity in brackets [] $=0$?

How to measure curvature

Consider a vector field A_{γ}. Move from point P to Q to R . Move from P to S to R. Compare.

The change in A_{γ} in going from P to Q is

$$
d A_{\gamma \mathrm{PQ}}=\left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}\right) a^{\alpha}
$$

Q: Why is this not a tensor equation? The derivative of a vector field is not a tensor. Use the covarient derivative

$$
\nabla_{\alpha} A_{\gamma}=\frac{\partial A_{\gamma}}{\partial x^{\alpha}}-\Gamma^{\sigma}{ }_{\gamma \alpha} A_{\sigma}
$$

The change in a round trip $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R} \rightarrow \mathrm{S} \rightarrow \mathrm{P}$ is

$$
d A_{\gamma \mathrm{PQR}}-d A_{\gamma \mathrm{PSR}}=\left[\nabla_{\beta}\left(\nabla_{\alpha} A_{\gamma}\right)-\nabla_{\alpha}\left(\nabla_{\beta} A_{\gamma}\right)\right] a^{\alpha} b^{\beta}
$$

Q: In MA1, I learned that $\frac{\partial^{2}}{\partial x \partial y}=\frac{\partial^{2}}{\partial y \partial x}$. Why doesn't the quantity in brackets [] $=0$? The parts involving partial derivatives of the vector A_{γ} is 0 . The remaining parts involve the Christoffel symbol times A. Therefore, the nonzero part can be written as

$$
d A_{\gamma \mathrm{PQR}}-d A_{\gamma \mathrm{PSR}}=-A_{\sigma} R_{\gamma \alpha \beta}^{\sigma} a^{\alpha} b^{\beta} .
$$

What does this say?
Q: In a round trip, a vector field A_{γ} changes by the contraction of what?

Riemann-Christoffel curvature tensor

Consider a vector field A_{γ}. Move from point P to Q to R . Move from P to S to R . Compare.

The change in A_{γ} in going from P to Q is

$$
d A_{\gamma \mathrm{PQ}}=\left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}\right) a^{\alpha}
$$

Q: Why is this not a tensor equation? The derivative of a vector field is not a tensor. Use the covarient derivative

$$
\nabla_{\alpha} A_{\gamma}=\frac{\partial A_{\gamma}}{\partial x^{\alpha}}-\Gamma^{\sigma}{ }_{\gamma \alpha} A_{\sigma}
$$

The change in a round trip $\mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{R} \rightarrow \mathrm{S} \rightarrow \mathrm{P}$ is

$$
d A_{\gamma} \mathrm{PQR}-d A_{\gamma \mathrm{PSR}}=\left[\nabla_{\beta}\left(\nabla_{\alpha} A_{\gamma}\right)-\nabla_{\alpha}\left(\nabla_{\beta} A_{\gamma}\right)\right] a^{\alpha} b^{\beta}
$$

Q: In MA1, I learned that $\frac{\partial^{2}}{\partial x \partial y}=\frac{\partial^{2}}{\partial y \partial x}$. Why doesn't the quantity in brackets [] $=0$? The parts involving partial derivatives of the vector A_{γ} is 0 . The remaining parts involve the Christoffel symbol times A. Therefore, the nonzero part can be written as

$$
d A_{\gamma \mathrm{PQR}}-d A_{\gamma \mathrm{PSR}}=-A_{\sigma} R_{\gamma \alpha \beta}^{\sigma} a^{\alpha} b^{\beta}
$$

What does this say?
Q: In a round trip, a vector field A_{γ} changes by the contraction of A, a tensor R, the position change a, and the position change b.
The tensor $R^{\sigma}{ }_{\gamma \alpha \beta}$ is called the Riemann-Cristoffel curvature tensor.
Q: If I swap α and β, is R the same? $R^{\sigma}{ }_{\gamma \alpha \beta}=R_{\gamma \beta \alpha}^{\sigma}$? What are the last two indices for?

Calculating $R^{\sigma}{ }_{\gamma \alpha \beta}$:

$$
\begin{aligned}
& \nabla_{\beta}\left(\nabla_{\alpha} A_{\gamma}\right)=\nabla_{\beta}\left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}}-\Gamma^{\sigma}{ }_{\gamma \alpha} A_{\sigma}\right) \\
& =\frac{\partial^{2} A_{\gamma}}{\partial x^{\beta} \partial x^{\alpha}}-A_{\sigma} \frac{\partial}{\partial x^{\beta}} \Gamma^{\sigma}{ }_{\gamma \alpha}-\Gamma^{\sigma}{ }_{\gamma \alpha} \frac{\partial}{\partial x^{\beta}} A_{\sigma}-\Gamma^{\sigma}{ }_{\gamma \beta}\left(\frac{\partial A_{\gamma}}{\partial x^{\alpha}} A_{\sigma}\right)
\end{aligned}
$$

We can ignore the partial derivatives of A, because in the end only the terms in A survive.
It is possible to show that

$$
R_{\gamma \alpha \beta}^{\sigma}=\frac{\partial}{\partial x^{\alpha}} \Gamma_{\gamma \beta}^{\sigma}-\frac{\partial}{\partial \chi^{\beta}} \Gamma_{\gamma \alpha}^{\sigma}+\Gamma_{\alpha \epsilon}^{\sigma} \Gamma_{\gamma \beta}^{\epsilon}-\Gamma_{\beta \epsilon}^{\sigma} \Gamma_{\gamma \alpha}^{\epsilon}
$$

Ricci tensor and curvature scalar, symmetry

The Ricci tensor is a contraction of the Riemann-Christoffel tensor

$$
R_{\gamma \beta} \equiv R^{\alpha}{ }_{\gamma \alpha \beta} .
$$

The curvature scalar is the contraction of the Ricci tensor

$$
R=g^{\beta \gamma} R_{\gamma \beta}
$$

Symmetry properties of the Riemann-Christoffel tensor $R_{\alpha \beta \gamma \delta} \equiv g_{\alpha \sigma} R^{\sigma}{ }_{\beta \gamma \delta}$

1) Symmetry is swapping the first and second pair

$$
R_{\alpha \beta \gamma \delta}=R_{\gamma \delta \alpha \beta}
$$

2) Antisymmetry in swapping first pair or second pair

$$
R_{\alpha \beta \gamma \delta}=-R_{\beta \alpha \gamma \delta}=-R_{\alpha \beta \delta \gamma}
$$

3) Cyclicity in the last three indices.

$$
R_{\alpha \beta \gamma \delta}+R_{\alpha \delta \beta \gamma}+R_{\alpha \gamma \delta \beta}=0
$$

Example: Surface of a 2-d sphere

The metric is

$$
\mathrm{ds}^{2}=a^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) .
$$

The nonzero parts of the Christoffel symbol are

$$
\begin{aligned}
& \Gamma^{\theta}{ }_{\phi \phi}=-\sin \theta \cos \theta \\
& \Gamma^{\phi}{ }_{\theta \phi}=\Gamma^{\phi}{ }_{\phi \theta}=-\sin \theta \cos \theta
\end{aligned}
$$

The Riemann-Christoffel tensor is in general

$$
R^{\sigma}{ }_{\gamma \alpha \beta}=\frac{\partial}{\partial x^{\alpha}} \Gamma^{\sigma}{ }_{\gamma \beta}-\frac{\partial}{\partial \chi^{\beta}} \Gamma^{\sigma}{ }_{\gamma \alpha}+\Gamma^{\sigma}{ }_{\alpha \epsilon} \Gamma^{\epsilon}{ }_{\gamma \beta}-\Gamma^{\sigma}{ }_{\beta \epsilon} \Gamma^{\epsilon}{ }_{\gamma \alpha}
$$

Q: Compute one non-zero component (no sum)

$$
R_{\phi \theta \phi}^{\theta}=\ldots=\sin ^{2} \theta
$$

Q: Compute (no sum)

$$
R^{\theta \phi}{ }_{\theta \phi}
$$

Q: Compute the Ricci tensor. Answer:

$$
\begin{aligned}
& R_{\theta}^{\theta}=R^{\phi}{ }_{\phi}=a^{-2} \\
& R^{\theta}{ }_{\phi}=R^{\phi}{ }_{\theta}=0
\end{aligned}
$$

Q: Compute the curvature scalar R

Bianchi identity

Bianchi's identity: The curvature induced change of a vector carried over the 6 faces of a cube is zero.
Proof: Each side is traversed twice (or 4 times) in opposite directions.

In equation form:
The change on the $y-z$ at face at x is
$d A_{\sigma}(x)=-A_{\sigma} R_{\gamma y z}^{\sigma}(x) \mathrm{dy} \mathrm{dz}$
The change on the $y-z$ face at $x+\mathrm{dx}$ is

$$
d A_{\sigma}(x+d x)=-A_{\sigma} R_{\gamma y z}^{\sigma}(x+\mathrm{dx}) \mathrm{dy} \mathrm{dz}
$$

The change over both faces is

$$
d A_{\sigma}(x+d x)-d A_{\sigma}(x)=-A_{\sigma} \nabla_{x} R_{\gamma y z}^{\sigma} \mathrm{dx} \mathrm{dy} \mathrm{dz}
$$

Q: Is $\nabla_{x} R^{\sigma}{ }_{\gamma y z}$ the same as $\frac{\partial}{\partial x} R^{\sigma}{ }_{\gamma y z}$?
Traverse the face at $x+\mathrm{dx}$ in the outward-pointing sense and the face at x in the outward-pointing sense.

The change over all 6 faces is

$$
A_{\sigma} \mathrm{dx} \mathrm{dydz}\left(\nabla_{x} R_{\gamma y z}^{\sigma}+\nabla_{y} R_{\gamma z x}^{\sigma}+\nabla_{z} R_{\gamma x y}^{\sigma}\right)
$$

and since each side in traversed in opposite directions, it is zero.

We chose x, y, and z , but we could have also chosen t for one of the directions. Therefore, we have proved the Bianchi identity,

$$
\nabla_{\alpha} R_{\tau \beta \gamma}^{\sigma}+\nabla_{\beta} R_{\tau \gamma \alpha}^{\sigma}+\nabla_{\gamma} R_{\tau \alpha \beta}^{\sigma}=0
$$

A contracted form of the Bianchi identity is:

$$
\nabla_{\mu}\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right)=0
$$

$\ln [103]]=$ fig[] := Module[\{\}, Show[Graphics3D[\{\{Opacity[.2], Cuboid[]\},
$\operatorname{Arrow}\{\{\{.1, .1,1.1\},\{.9, .1,1.1\},\{.9, .9,1.1\},\{.1, .9,1.1\},\{.1, .2,1.1\}\}]$, Arrow[Reverse@\{\{.1, .1, .1\}, \{.9, .1, .1\}, \{.9, .9, .1\}, \{.1, .9, .1\}, \{.1, .2, .1\}\}], Arrow[\{\{.1, .1, .1\}, \{.1, .1, 1.1\}\}],
Arrow[\{\{.1, .2, 1.1\}, \{.1, .2, .2\}\}]\}], ImageSize \rightarrow 200]]
$\ln [104]:=\mathbf{f i g}[]$

Out[104]=

