Robertson-Walker metric-1 Apr 2010

A 3-d space that is homogeneous and isotropic has a special choice of time. A choice of coordinates is

$$
(t, r, \theta, \phi)
$$

and the metric is

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2}\left[\frac{d r^{2}}{1-\left(r / r_{0}\right)^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

(r, θ, ϕ) is called the comoving coordinate. A galaxy stays at the same position; time changes.
r_{0}^{2} can have any value, positive or negative
$a(t)$ is called the expansion parameter.
Friedman's equation is

$$
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2}-\frac{8 \pi}{3} G \rho=-\frac{1}{r_{0}^{2} a^{2}}
$$

We derived Fiedmann's equation except for the constant $-\frac{1}{r_{0}^{2}}$ on the RHS.

- Outline
- Derivation of the Robertson-Walker metric
- Derivation of Friedman's equation from the Robertson-Walker metric

From of the metric

Assumptions:

1) There is a time coordinate that is proper time.
2) At a given time, the space within a small bubble is isotropic.
3) At a given time, the space is homogeneous.

The metric is

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+A(t, \text { vector } r)\left(\mathrm{dr}^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

Q : What assumptions have gone into writing a metric of this form?
Since the space is homegeneous,

$$
A\left(t, r_{1}\right) / A\left(t, r_{2}\right)
$$

can depend on time and also on the distance between the points. It cannot depend on the location. Therefore

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2} B(r)\left(\mathrm{dr}^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

Q: Have I eliminated the possibility of a curved space by grouping the $\mathrm{dr}, \mathrm{d} \theta$, and $\mathrm{d} \phi$ terms together as $\left(\mathrm{dr}^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)$, which is the case for flat, spherical coordinates?
By mapping the 3-d onto the surface of a 4-d symmetric space, we can show that the possible metrics are

$$
\begin{aligned}
& \mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2}\left(\frac{\mathrm{dr}^{2}}{1-\left(\frac{r}{r_{0}}\right)^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right), \\
& \mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2}\left(\frac{\mathrm{dr}^{2}}{1+\left(\frac{r}{r_{0}}\right)^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right),
\end{aligned}
$$

and

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2}\left(\mathrm{dr}^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

Q: Interpret the spatial parts of this metric.

Derivation of Friedman's equation

The metric is

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2}\left[\frac{d r^{2}}{1-\left(r / r_{0}\right)^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

Since the coordinate time is the same as proper time, in average the galaxies are at rest.
The stress-energy tensor

$$
T^{\mu \nu}=\left(\begin{array}{cccc}
\rho & 0 & 0 & 0 \\
0 & P & 0 & 0 \\
0 & 0 & P & 0 \\
0 & 0 & 0 & P
\end{array}\right)
$$

Q: Galaxies occur in clusters. If the motion of the galaxies is faster, does that change the stress-energy tensor?

Einstein's equation is

$$
G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=-8 \pi G T_{\mu \nu}
$$

Plan: Calculate the curvature tensors and find conditions on $a(t)$ and r_{0} that satisfy E's equations.

Rewrite

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2}\left[\frac{d r^{2}}{1-\left(r / r_{0}\right)^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

as

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+a(t)^{2}\left(\tilde{g}_{11} \mathrm{dx}_{1}^{2}+\tilde{g}_{22} \mathrm{dx}_{2}^{2}+\tilde{g}_{33} \mathrm{dx}_{3}^{2}\right)
$$

The derivatives of \tilde{g} are not zero. At small $r, \tilde{g}=\left(\begin{array}{lll}1 & 0 & \square \\ 0 & 1 & \square \\ \square & \square & 1\end{array}\right)$

1. Easy one: We found (on $3 / 31$) that the curvature scalar

$$
R=4 \pi G T^{\alpha}{ }_{\alpha} .
$$

Here

$$
\begin{aligned}
& T^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
-\rho & 0 & 0 & 0 \\
0 & a^{2} P & 0 & 0 \\
0 & 0 & a^{2} P & 0 \\
0 & 0 & 0 & a^{2} P
\end{array}\right) \\
& R=4 \pi G\left(-\rho+3 a^{2} P\right) .
\end{aligned}
$$

Derivation of Friedman's equation, part 2

2. Compute Christoffel symbols
a) Time part

$$
\Gamma^{0}{ }_{\alpha \beta}=\frac{1}{2} g^{00}\left(g_{0 \alpha, \beta}+g_{0 \beta, \alpha}-g_{\alpha \beta, 0}\right)
$$

$\alpha=0$:

$$
\Gamma_{0 \beta}^{0}=\frac{1}{2} g^{00}\left(g_{00, \beta}+g_{0 \beta, 0}-g_{0 \beta, 0}\right)=\frac{1}{2} g^{00} g_{00, \beta}=0,
$$

because $g_{00}=-1$.
$\alpha=i \neq 0$ and $\beta=j \neq 0$:

$$
\Gamma^{0}{ }_{i j}=\frac{1}{2} g^{00}\left(g_{0 i, j}+g_{0 j, i}-g_{i j, 0}\right)
$$

The first two terms are zero because ???.

$$
\Gamma_{i j}^{0}=-\frac{1}{2}\left(-g_{i j, 0}\right)=a(t) \frac{d a}{d t} \tilde{g}_{\mathrm{ij}} .
$$

b) Space part

$$
\Gamma^{i}{ }_{\alpha \beta}=\frac{1}{2} g^{i i}\left(g_{\mathrm{i} \alpha, \beta}+g_{\mathrm{i} \beta, \alpha}-g_{\alpha \beta, i}\right)
$$

$\alpha=0$.

$$
\Gamma_{0 \beta}^{i}=\frac{1}{2} g^{i i}\left(g_{i 0, \beta}+g_{i \beta, 0}-g_{0 \beta, i}\right)
$$

The first term is zero. Second term is zero unless $\beta=i$, in which case it is $\frac{1}{2} g^{\text {ii }} 2 a \dot{a} \tilde{g_{i i}}=\frac{\dot{a}}{a}$. The third term is zero, since $g_{00}=-1$.

$$
\Gamma_{0 \beta}^{i}=\frac{\dot{a}}{a} \delta_{\beta}^{i} .
$$

$\alpha=i \neq 0$ and $\beta=j \neq 0$:

$$
\Gamma^{i}{ }_{\mathrm{jk}}=\frac{1}{2} g^{\mathrm{ii}}\left(g_{\mathrm{ij}, k}+g_{\mathrm{ik}, j}-g_{\mathrm{jk}, i}\right)
$$

involves space coordinates only.

