Equation for weak gravity waves-13 April 2010

- Outline
- Introduction (§16)

How to detect gravity waves
Order-of-magnitude strains
Polarization

- Wave equation (§21.5) (Today)
- Source of gravitational waves (§23)

For gravitational waves, the perturbation of the metric is small. Let the metric be

$$
g_{\mu v}=\eta_{\mu v}+h_{\mu v}
$$

where $\eta_{\mu \nu}$ is the Minkowski metric and $h_{\mu \nu}$ is small.

Plan:

1) Compute the Christoffel symbols and then the Ricci tensor. Keep first-order terms in h. Then use Einstein's equation

$$
R_{\mu \nu}=-8 \pi G S_{\mu \nu}=-8 \pi G\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)
$$

Will get the wave equation.
2) Solve the wave equation for plane waves.

E's equation for weak fields

The Christoffel symbols

$$
\Gamma^{\sigma}{ }_{\lambda \mu}=\frac{1}{2} g^{v \sigma}\left(g_{\mu v, \lambda}+g_{\lambda v, \mu}-g_{\mu \lambda, v}\right)
$$

The terms $g_{\mu \nu, \lambda}$ are first order in h. Therefore we neglect h in the term $g^{\nu \sigma}$.

$$
\Gamma^{\sigma}{ }_{\lambda \mu}=\frac{1}{2} \eta^{v \sigma}\left(h_{\mu v, \lambda}+h_{\lambda v, \mu}-h_{\mu \lambda, \nu}\right)
$$

The Ricci tensor

$$
R_{\mu \kappa}=\frac{\partial}{\partial x^{\kappa}} \Gamma^{\lambda}{ }_{\mu \lambda}-\frac{\partial}{\partial x^{\lambda}} \Gamma^{\lambda}{ }_{\mu \kappa}+\Gamma^{\eta}{ }_{\mu \lambda} \Gamma^{\lambda}{ }_{k \eta}-\Gamma^{\eta}{ }_{\mu \kappa} \Gamma^{\lambda}{ }_{\lambda \eta}
$$

Neglect the 3rd and 4th terms are $2^{\text {nd }}$ order in h.

$$
R_{\mu \kappa}=\frac{\partial}{\partial x^{\kappa}} \Gamma^{\lambda}{ }_{\mu \lambda}-\frac{\partial}{\partial x^{\lambda}} \Gamma^{\lambda}{ }_{\mu \kappa}
$$

Now do the work.
Term $\frac{\partial}{\partial \chi^{\kappa}} \Gamma^{\lambda}{ }_{\mu \lambda}$:

$$
\Gamma^{\lambda}{ }_{\lambda \mu}=\frac{1}{2} \eta^{\nu \lambda}\left(h_{\mu v, \lambda}+h_{\lambda v, \mu}-h_{\mu \lambda, v}\right)
$$

Since I can swap v and λ on RHS, 1st and 3rd terms cancel.

$$
\frac{\partial}{\partial x^{\kappa}} \Gamma^{\lambda}{ }_{\mu \lambda}=\frac{1}{2} \eta^{\nu \lambda} \frac{\partial^{2}}{\partial x^{\mu} \partial x^{\kappa}} h_{\lambda v}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{\mu} \partial x^{\kappa}} h_{\lambda}^{\lambda}
$$

The other term

$$
\begin{aligned}
& -\frac{\partial}{\partial x^{\lambda}} \Gamma_{\mu \kappa}^{\lambda}=-\frac{1}{2} \eta^{\nu \lambda}\left(h_{\mu v, \kappa, \lambda}+h_{\kappa v, \mu, \lambda}-h_{\mu \kappa, v, \lambda}\right) \\
& =-\frac{1}{2}\left(h_{\mu, \kappa, \lambda}^{\lambda}+h_{\kappa, \mu, \lambda}^{\lambda}-h_{\mu \kappa, \lambda}^{, \lambda}\right)
\end{aligned}
$$

The whole works:

$$
R_{\mu \kappa}=-\frac{1}{2}\left(\frac{\partial}{\partial x^{\kappa}} A_{\mu}+\frac{\partial}{\partial x^{\mu}} A_{\kappa}-h_{\mu \kappa, \lambda}^{, \lambda}\right),
$$

where

$$
A_{\mu}=\frac{\partial}{\partial x^{\lambda}} h_{\mu}^{\lambda}-\frac{1}{2} \frac{\partial}{\partial \mu} h_{\lambda}^{\lambda} .
$$

In more customary notation,

$$
h_{\mu \kappa, \lambda}^{, \lambda}=\left(-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) h_{\mu \kappa}
$$

is the d'Alembertian $\square h_{\mu \kappa}$.
Finally,

$$
R_{\mu \kappa}=-\frac{1}{2}\left(\frac{\partial}{\partial x^{\kappa}} A_{\mu}+\frac{\partial}{\partial x^{\mu}} A_{\kappa}-\square h_{\mu \kappa}\right)=-8 \pi G S_{\mu \nu}
$$

Q: Is this a customary wave equation? What are the terms?

Unphysical freedom

There is freedom in h. Change the coordinate system. Replace x^{α} by

$$
x^{\prime \alpha}=x^{\alpha}+\epsilon^{\alpha}(x)
$$

where $\epsilon^{\alpha}(x)$ is small just like $h_{\alpha \beta}$. Then

$$
\begin{aligned}
& \eta^{\alpha \beta}+h^{\prime} \alpha \beta=\frac{\partial x^{\prime \alpha}}{\partial x^{\mu}} \frac{\partial x^{\prime \beta}}{\partial x^{\nu}}\left(\eta^{\mu v}+h^{\mu v}\right) \\
& =\left(\delta_{\mu}^{\alpha}+\frac{\partial \epsilon^{\alpha}}{\partial x^{\mu}}\right)\left(\delta_{v}^{\beta}+\frac{\partial \epsilon^{\beta}}{\partial x^{\nu}}\right)\left(\eta^{\mu v}+h^{\mu v}\right) \\
& =\eta^{\alpha \beta}+h^{\alpha \beta}+\frac{\partial \epsilon^{\alpha}}{\partial x^{\mu}} \eta^{\mu \beta}+\frac{\partial \epsilon^{\beta}}{\partial x^{\nu}} \eta^{\alpha v}
\end{aligned}
$$

I ignored the 2nd-order terms to write the last line. The 1st order term is

$$
h^{1 \alpha \beta}=h^{\alpha \beta}+\frac{\partial \epsilon^{\alpha}}{\partial x^{\mu}} \eta^{\mu \beta}+\frac{\partial \epsilon^{\beta}}{\partial x^{\prime}} \eta^{\alpha \nu}
$$

Upon a change in the coordinate system, the strain changes to

$$
h^{\prime}{ }_{\alpha \beta}=h_{\alpha \beta}+\frac{\partial \epsilon_{\alpha}}{\partial x^{\beta}}+\frac{\partial \epsilon_{\beta}}{\partial x^{\alpha}}
$$

Choose a "gauge" so that

$$
A_{\mu}=\frac{\partial}{\partial x^{\lambda}} h_{\mu}^{\lambda}-\frac{1}{2} \frac{\partial}{\partial x^{\mu}} h_{\lambda}^{\lambda}=0 \text {. }
$$

If h does not satisfy this condition, then choose a transformation $\epsilon(x)$ so that it does.
Then we have the wave equation

$$
\square \mathbf{h}_{\mu \kappa} \equiv\left(-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) h_{\mu \kappa}=-16 \pi G S_{\mu \kappa} \text {. }
$$

Solution of the wave equation

Guess a plane-wave solution

$$
h_{\alpha \beta}\left(x^{\gamma}\right)=a_{\alpha \beta} e^{i k_{\gamma} x^{\gamma}} .
$$

Q: How do you take derivatives of h ? Compute $\frac{\partial^{2}}{\partial t^{2}} h_{\alpha \beta}$.

For this to satisfy the wave equation,

$$
\left(-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) a_{\alpha \beta} e^{\iota k_{\gamma} x^{\gamma}}=a_{\alpha \beta} e^{\iota k_{\gamma} x^{\gamma}}\left(-k_{0}^{2}+k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=0
$$

or for some $a_{\alpha \beta} \neq 0$,

$$
k_{\mu} k^{\mu}=0
$$

$\mathrm{Q}:$ Interpret $k_{\mu} k^{\mu}=0$.

For the solution to satisy the gauge,

$$
\begin{aligned}
& k_{\lambda} a_{\beta}^{\lambda} e^{\iota k_{\gamma} \chi^{\gamma}}=\frac{1}{2} k_{\beta} a_{\lambda}^{\lambda} e^{\iota k_{\gamma} \chi^{\gamma}} \\
& k_{\lambda} a_{\beta}^{\lambda}=\frac{1}{2} k_{\beta} a_{\lambda}^{\lambda}
\end{aligned}
$$

Problem: Consider a wave traveling in the z direction.

$$
k^{\mu}=(k, 0,0, k)
$$

where $k>0$. Determine the possible values for $a_{\alpha \beta}$.
The gauge condition $k^{\lambda} a_{\lambda \beta}=\frac{1}{2} k_{\beta} a_{\lambda}^{\lambda}$.

$$
k a_{0 \beta}+k a_{3 \beta}=\frac{1}{2} k_{\beta}\left(-a_{00}+a_{11}+a_{22}+a_{33}\right)
$$

gives

$$
\begin{aligned}
& a_{00}+a_{30}=-\frac{1}{2}\left(-a_{00}+a_{11}+a_{22}+a_{33}\right) \\
& a_{01}+a_{31}=a_{02}+a_{32}=0 \\
& a_{03}+a_{33}=\frac{1}{2}\left(-a_{00}+a_{11}+a_{22}+a_{33}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
& a_{01}=-a_{31} \\
& a_{02}=-a_{32} \\
& a_{03}=-\frac{1}{2}\left(a_{33}+a_{00}\right) \\
& a_{22}=-a_{11}
\end{aligned}
$$

Replace x^{α} by

$$
x^{\prime \alpha}=x^{\alpha}+\epsilon^{\alpha}(x)
$$

Then $\quad h^{\prime}{ }_{\alpha \beta}=h_{\alpha \beta}+\frac{\partial \epsilon_{\alpha}}{\partial x^{\beta}}+\frac{\partial \epsilon_{\beta}}{\partial x^{\alpha}}$ yields
$a_{11}^{\prime}=a_{11}+2 k_{1} \epsilon_{1}=a_{11}$
$a^{\prime}{ }_{12}=a_{12}+k_{1} \epsilon_{2}+k_{2} \epsilon_{1}=a_{12}$
$a^{\prime}{ }_{13}=a_{13}+k_{1} \epsilon_{3}+k_{3} \epsilon_{1}=a_{13}+k \epsilon_{1}$
$a^{\prime}{ }_{23}=a_{23}+k_{2} \epsilon_{3}+k_{3} \epsilon_{2}=a_{23}+k \epsilon_{2}$
$a^{\prime}{ }_{33}=a_{33}+2 k_{3} \epsilon_{3}=a_{33}+2 k \epsilon_{3}$
$a^{\prime}{ }_{00}=a_{00}-2 k_{0} \epsilon_{0}=a_{00}-2 k \epsilon_{0}$
because $k_{1}=k_{2}=0$.
Q: Interpret these equations. Which $a_{\alpha \beta}$ are physical?
-

I can choose ϵ_{1} to eliminate a_{13}. Similarly I can eliminate a_{23}, a_{33}, and a_{00}.
Setting $a_{33}=0$ removes the longitudinal polarization.
a_{11} and a_{12} do not change. They cannot be removed with a coordinate change.

There are two independent numbers a_{11} and a_{12}. The two independent polarizations are

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Q: Simplicio: If I did not choose to eliminate a_{33}, then there would be additional terms in the metric

$$
\mathrm{ds}^{2}=-\mathrm{dt}^{2}+[1+f(t-z)] \mathrm{dx}^{2}+[1-f(t-z)] \mathrm{dy}^{2}+[1+w(t-z)] \mathrm{dz}^{2}-w(t-z) \mathrm{dt} \mathrm{dz}
$$

I could make $w(t-z)$ really big and detect gravity waves easily. What is wrong?

Spin of gravity waves

Consider the polarization

$$
a_{\alpha \beta}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & i & 0 \\
0 & i & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Rotate by angle θ about the z axis. The transformation is

$$
\begin{aligned}
& \Lambda_{1}^{1}=\cos \theta \\
& \Lambda_{1}^{2}=\sin \theta \\
& \Lambda_{2}^{1}=-\sin \theta \\
& \Lambda_{2}^{2}=\cos \theta \\
& \Lambda_{0}^{0}=\Lambda_{3}^{3}=1
\end{aligned}
$$

and the other terms are 0 .

$$
a^{\prime}{ }_{\alpha \beta}=\Lambda_{\alpha}{ }^{\gamma} \Lambda_{\beta}{ }^{\delta} a_{\gamma \delta}
$$

Do the 11 term

$$
\begin{aligned}
& a_{11}^{\prime}=\Lambda_{1}^{\gamma} \Lambda_{1}{ }^{\delta} a_{\gamma \delta}=\Lambda_{1}{ }^{1} \Lambda_{1}{ }^{1} a_{11}+\Lambda_{1}{ }^{2} \Lambda_{1}{ }^{1} a_{21}+\Lambda_{1}^{1} \Lambda_{1}{ }^{2} a_{12}+\Lambda_{1}{ }^{2} \Lambda_{1}{ }^{2} a_{22} \\
& =\cos ^{2} \theta-2 i \sin \theta \cos \theta-\sin ^{2} \theta \\
& =\cos 2 \theta-i \sin 2 \theta \\
& =\mathrm{e}^{2 i \theta}
\end{aligned}
$$

We can show that

$$
a^{\prime}{ }_{\alpha \beta}=e^{2 i \theta} a_{\alpha \beta}
$$

For the polarization

$$
\begin{aligned}
b_{\alpha \beta} & =\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -i & 0 \\
0 & -i & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
b^{\prime}{ }_{\alpha \beta} & =e^{-2 i \theta} b_{\alpha \beta}
\end{aligned}
$$

Q: For what rotation angle is the rotated wave the same as the original wave?

Gravity waves are spin 2.

