Black holes

-20 Apr 2010

- Outline
- Hints of strangeness from our study of the orbits in the Schwarzscild metric
- Eddington-Finkelstein coordinates for the Schwarzschild metric (§12). (today)
- Stellar collapse (§24)
- Observations of black holes
- Radiation from black holes

Hints of strangeness

The Schwarzschild metric with the usual coordinate system is

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

- Strangeness \#1

Q: The time coordinate is t, and the coordinates r, θ, and ϕ are spatial coordinates for all $r>0$. True or false?

- Strangeness \#2

In Homework 3, Problem 3, we found that for a radial orbit the proper time and coordinate time to fall radially from $r=6 \mathrm{M}$.

Caption: The proper time (purple, dashed) and coordinate time (blue) to fall from $6 M$ to r.
An observer gets reports from a guy falling radially into a black hole. One report sent at $r=6 \mathrm{M}$ says, "I started by clock." The next report said, "I am passing $r=3 M$. The time on my watch is [garbled]."
Q: What was the report sent at $r=3 M$?
Q: Sagredo: "The coordinate system is singular at $r=2$ M. I can fix that by changing my coordinate system." Simplicio: "That might make the proper time singular." Is Simplicio's concern justified?

2 W15BlackHoles.nb

Eddington-Finkelstein coordinates

Consider radial light rays.

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}=0
$$

I can write

$$
d t= \pm d r\left(1-\frac{2 M}{r}\right)^{-1}= \pm d\left(r+2 M \log \left|\frac{r}{2 M}-1\right|\right)
$$

Let $r^{*}=r+2 M \log \left|\frac{r}{2 M}-1\right|$.
For incoming light rays, $d r<0$. I choose the $-\operatorname{sign}$. Then $d\left(t+r^{*}\right)=0$.
For outgoing light rays, I choose the $+\operatorname{sign}$. Then $d\left(t-r^{*}\right)=0$.

Define a new coordinate system (v, r), where

$$
v \equiv t+r^{*}=t+r+2 M \log \left|\frac{r}{2 M}-1\right|
$$

This coordinate system has the property that radial incoming light rays are at $v=$ constant.

The metric is

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d v^{2}+2 d v d r+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

There is no longer a singularity at $r=2 M$.

Consider the radial light rays. $d \theta=d \phi=0$.

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d v^{2}+2 d v d r=0
$$

One solution is $d v \neq 0$. Then

$$
\begin{aligned}
& \frac{d r}{d v}=\frac{1}{2}\left(1-\frac{2 M}{r}\right) \\
& v=2 r+4 M \log \left|\frac{r}{2 M}-1\right|+\text { const }
\end{aligned}
$$

At $r>2 M, \frac{d r}{d v}>0$. This is an outgoing light ray.
Ar $r=2 M, \frac{d r}{d v}=0$. The light ray is not progressing.
At $r<2 M, \frac{d r}{d v}<0$. The light ray is moving to smaller r.
The other solution is $d v=0$. We want something to change for light rays. Define $\tilde{t}=v-r$.
For this solution, $\tilde{t}=-r+$ const.These are incoming light rays.
The metric is

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d \tilde{t}^{2}+4 \frac{M}{r} d \tilde{t} d r+\left(1+\frac{2 M}{r}\right) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Caption: Radial light rays for solution $d v=0$ (blue) and $d v \neq 0$ (purple). Also shown are the world lines of three apples falling radially (taupe) from rest at ∞, which cross events A, B, and C. The coordinates are (\tilde{t}, r)

Q: At $r>2 M$, how are the light rays of the two radial solution different? Consider two radial light pulses sent out at event B . Q: At $r<2 M$, how are the light rays of the two radial solution different? Consider two radial light pulses sent out at event A. Q: For $r<2 M$, is $d r$ time-like or space-like? Eg, is the separation between $(\tilde{t}, r, \theta, \phi)$ and $(\tilde{t}, r+d r, \theta, \phi)$ time-like or spacelike? Same question for $d t$. Look at the region near event A.

