1. Let the metric for a gravitational wave be

$$
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+[1+f(t-z)] d z^{2}-f(t-z) d t d z
$$

where $f(t-z)$ is an arbitrary function of $(t-z)$. Consider long-wavelength gravity waves. At a given time t_{0}, over the size of your gravity wave detector, $f\left(t_{0}-z\right)$ is nearly constant.
(a) (1 pt.) In which direction is the wave moving?
(b) (7 pts .) Compute the distance between two parts of your gravity-wave detector at $(0,0,0,0)$ and $(0,0,0,1)$ with and without the wave. Hint: This metric is not the same as the metric that we introduced in class on April 6.
2. Consider the Römer, Einstein, and Shapiro time delays, equations 8-10 in Taylor, J, and Weisberg, J, 1989, ApJ, 345, 434. (There is a link on the syllabus.)
(a) Explain each time delay at a level appropriate for your little sister, who is enrolled in PHY183.
(b) For the binary pulsar 1913+16, estimate the magnitude of each time delay for the radio waves passing in the pulsar system and in the solar system. Your estimate need only be good to a factor of 10 .
3. Hartle problem 23.9
4. Hartle problem 23.13

