Orbits of particles with mass. Effective potential

Recall:
(1)The length ${ }^{2}$ of the 4 -velocity is -1 .
(2) u_{0} is conserved because the metric is independent of time.
(3) u_{3} (in the ϕ direction) is conserved because the metric is independent of ϕ.

From (1-3), we derived

$$
\frac{e^{2}-1}{2}=\frac{1}{2}\left(\frac{d r}{d \tau}\right)^{2}+V_{\mathrm{eff}}(r)
$$

where $V_{\text {eff }}(r)=-\frac{M}{r}+\frac{l^{2}}{2 r^{2}}-\frac{M l^{2}}{r^{3}}$
Scale r and angular momentum l by dividing by M.

```
\(\operatorname{vEff}\left[r_{-}, l_{-}\right]:=-1 / r+\frac{l^{2}}{2 r^{2}}-\frac{l^{2}}{r^{3}} ; \operatorname{vEffNewton}\left[r_{-}, l_{-}\right]:=-1 / r+\frac{l^{2}}{2 r^{2}}\)
plotVEffective[1_, \(e_{-}\), OptionsPattern[PlotRange \(\rightarrow\) Automatic]] :=
    Module[\{r, tp, rl, pr\}, r=.; tp = r /. Solve[e== vEff[r, l], r]匹2; ; 3];
        pr = OptionValue[PlotRange];
        \(r l=\operatorname{If}[\) Length@Dimensions@ \(\operatorname{pr}>1, \operatorname{pr} \llbracket 1],\{2,40\}]\); Plot [\{vEff[r, l], vEffNewton [r, l]\},
            \(\{r, r l \llbracket 1 \rrbracket, r l \llbracket 2 \rrbracket\}, B a s e S t y l e \rightarrow\{F o n t F a m i l y \rightarrow\) "Helvetica", FontSize \(\rightarrow\) Medium \(\}\),
            AxesLabel \(\rightarrow\left\{" r / M ", ~ " V_{\text {eff }}\right\}\), PlotRange \(\rightarrow\) OptionValue [PlotRange],
            Epilog \(\rightarrow\{\) Dashed, \(\operatorname{If}[\operatorname{Im}[\operatorname{tp} \llbracket 1 \rrbracket] \neq 0, \operatorname{Line}[\{ \}], \operatorname{Line}[\{\#, \mathrm{e}\} \& / @ \operatorname{tp}]\}\}]\)
    ]
plotVEffective[4.3, -. 025, PlotRange \(\rightarrow\{-.05, .05\}]\)
```


Caption: Effective potential for Einstein's theory (blue) and for Newton's theory (purple)
Orbit exists if $\frac{e^{2}-1}{2}>V_{\text {eff }}(r)$ for some r, and there are two turning points. The turning points are where $\frac{e^{2}-1}{2}=V_{\text {eff }}(r)$.

- Questions

- For an orbit of a planet that just grazes the sun, what is the order of magnitude of r / M ?
-

When orbits are not possible

Find extrema of $V_{\text {eff }}(r)$
Solve[D[vEff[r, l], r] $=0, r$]
$\left\{\left\{r \rightarrow \frac{1}{2}\left(l^{2}-1 \sqrt{-12+l^{2}}\right)\right\},\left\{r \rightarrow \frac{1}{2}\left(l^{2}+1 \sqrt{-12+l^{2}}\right)\right\}\right\}$
If $l>12^{1 / 2} M$, there are two extrema. If $l<12^{1 / 2} M$, the extrema are imaginary.
plotVEffective[3.5, -. 053, PlotRange $\rightarrow\{-.06, .02\}]$

How to find the orbit

Use a new variable $u=1 / r$, and substitute $\frac{d r}{d \tau}=\frac{d u}{d \phi} \frac{d \phi}{d \tau} \frac{d r}{d u}=\frac{d u}{d \phi} \frac{l}{r^{2}}\left(-r^{2}\right)$ to get

$$
\left(\frac{\mathrm{du}}{d \phi}\right)^{2}=\frac{e^{2}-1}{l^{2}}+\frac{2 M u}{l^{2}}-u^{2}+2 M u^{3} .
$$

Integrate to find $u(\phi)$. This needs to be done numerically.
To find $\phi(\tau)$, numerically integrate
$d \tau=\frac{1}{l} r(\phi)^{2} d \phi$

Particles without mass. Light

For planets, we used

$$
u^{\mu}=\left(\frac{d t}{d \tau}, \frac{d r}{d \tau}, \frac{d \theta}{d \tau}, \frac{d \phi}{d \tau}\right) .
$$

We could just as well have used 4-momentum $p^{\mu}=m u^{\mu}$.
For photons, that is not valid because proper time is 0 .
Instead of proper time, use a parameter λ. Then

$$
p^{\mu}=\left(\frac{d t}{d \lambda}, \frac{d r}{d \lambda}, \frac{d \theta}{d \lambda}, \frac{d \phi}{d \lambda}\right) .
$$

We will solve a particular orbit and find out what λ is in that case.
Recall:
(1) The length of the 4 -momentum p is 0 .
(2) p_{0} is conserved because the metric is independent of time. Define

$$
e=p_{0}=\left(1-\frac{2 M}{r}\right) \frac{d t}{d \lambda}
$$

(3) p_{3} (in the ϕ direction) is conserved because the metric is independent of ϕ.

Define

$$
l=r^{2} \frac{d \phi}{d \lambda}
$$

From (1-3), we get

$$
\begin{aligned}
& -\left(1-\frac{2 M}{r}\right)^{-1} e^{2}+\left(1-\frac{2 M}{r}\right)^{-1}\left(\frac{d r}{d \lambda}\right)^{2}+\frac{l^{2}}{r^{2}}=0 . \\
& \left(\frac{e}{l}\right)^{2}=\frac{1}{l^{2}}\left(\frac{d r}{d \lambda}\right)^{2}+W_{\mathrm{eff}}(r)
\end{aligned}
$$

where $W_{\text {eff }}(r)=\frac{1}{r^{2}}\left(1-\frac{2 M}{r}\right)$.
A photon is headed for $r=b$ from the star. The parameter b is called the impact parameter. $\sin \phi=b / r$, and $\cos \phi \frac{d \phi}{d \lambda}=-\frac{b}{r^{2}} \frac{d r}{d \lambda}$. Rewrite as

$$
\cos \phi l=-b \frac{d r}{d \lambda}
$$

As $r \rightarrow \infty$, LHS $\rightarrow l$ and RHS $\rightarrow b e$. Therefore $b=l / e$.
$\frac{1}{b^{2}}=\frac{1}{l^{2}}\left(\frac{d r}{d \lambda}\right)^{2}+W_{\mathrm{eff}}(r)$,

New Slide

```
wEff[r_] := - 2 r-3}+\mp@subsup{r}{}{-2}
plotWEffective[b_, OptionsPattern[PlotRange }->\mathrm{ Automatic]] :=
    Module[{r, tp, rl, pr}, r=.; tp = r /. Solve[b-2 == wEff[r], r]\llbracket2 ; ; 3|;
        pr = OptionValue[PlotRange];
        rl = If[Length@Dimensions@pr > 1, pr\llbracket1\rrbracket, {2, 40}];
        Plot[wEff[r], {r, rl\llbracket1\rrbracket, rl\llbracket2\rrbracket}, BaseStyle }->{\mathrm{ FontFamily }->\mathrm{ "Helvetica", FontSize }->\mathrm{ Medium},
            AxesLabel }->{"r/M", "Weff"}, PlotRange ->OptionValue [PlotRange]
            Epilog }->{\mathrm{ Dashed, If[Im[tp匹2|] # 0, Line[{}], Line[{{tp匹2】, b
    ]
plotWEffective[10., PlotRange -> {{2, 40}, {0, .04}}]
```


When $b=10 M$ ，photons go to in to $r=8.6 M$ and then back out again．
Find the peak of $W_{\text {eff }}$ ．

$$
r / . \text { Solve }[D[w E f f[r], r]=0, r] \llbracket 1 \rrbracket
$$

3

Solve for b
b＝Sqrt［1／wEff［\％］］
$3 \sqrt{3}$

If $b<27^{1 / 2} M$, photons go toward the mass and never go back out.

If the sun were a point mass, then the critical impact parameter for capture is

```
mSun = 1.48 "km"; Sqrt[27] mSun
```

7.69031 km

What is the parameter λ ? Path of a radial light ray

$e=\left(1-\frac{2 M}{r}\right) \frac{d t}{d \lambda}$ and $l=r^{2} \frac{d \phi}{d \lambda}$. What is λ ?
We have differential equations for $\frac{d r}{d \lambda}$ and $\frac{d \phi}{d \lambda}$, which we can solve. Do the simple case of an almost radial light ray, for which $l \ll 1$. In that case $\left(\frac{e}{l}\right)^{2}=\frac{1}{l^{2}}\left(\frac{d r}{d \lambda}\right)^{2}+W_{\text {eff }}(r)$ becomes

$$
e^{2}=\left(\frac{d r}{d \lambda}\right)^{2} .
$$

The solution is

$$
r=e \lambda .
$$

Surprise: the parameter λ is not time. For a radial light ray, the parameter λ is the radial coordinate divided by the energy at ∞. (Recall e is the energy at $r \rightarrow \infty$.)

Calculate the coordinate time.

$$
\begin{aligned}
& e=\left(1-\frac{2 M}{r}\right) \frac{d t}{d \lambda} \\
& =\left(1-\frac{2 M}{r}\right) \frac{d t}{d r} \frac{d r}{d \lambda}
\end{aligned}
$$

For radial paths, $e^{2}=\left(\frac{d r}{d \lambda}\right)^{2}$. Substitute to get

$$
\begin{aligned}
& d t= \pm d r\left(1-\frac{2 M}{r}\right)^{-1} \\
& = \pm d r\left(1+\frac{2 M}{r-2 M}\right)
\end{aligned}
$$

Use + for outgoing paths and - for incoming paths. Substitute $r=e \lambda$ to get

$$
\Delta t=e\left(\lambda_{2}-\lambda_{1}+2 M \log \frac{\lambda_{2}-2 M / e}{\lambda_{1}-2 M / e}\right)
$$

If the energy of the photon is bigger, the parameter λ changes more slowly as r and t change. However the path $r(t)$ is independent of energy.

New Slide

Calculate the maximum orbital speed of a planet in circular orbit around a point mass.

