
The universe

In the 1920's, V. M. Slipher measured velocities of nearby galaxies. Hubble estimated their distances. Hubble (Hubble, E., 1929,
Proc.  Nat.  Acad.  Sci.  15,  168)  found  velocities  v  are  proportional  to  distances
D.

This is called Hubble's Law.
v = H D



|

Hubble expansion is special
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Expansion by Hubble's Law is very special. Consider Milky Way, galaxy A at distance 1, and galaxy B at distance 2.
1. Expansion is by a scale factor. vA = 1, and vB = 2. Suppose some time passed, and A has moved by 0.5 to 1.5. Then B has
moved by 1 to 3. B remains twice as far as A.
2. Centerless expansion.
A is 51ê2 from B. MW is 2 from B.

After time passed, A is I32 + 1.52M1ê2
= 3

2
51ê2 from B, and MW is 3

2
2 from B.

Galaxy B is the center of the expansion too.
3. There exists a beginning, when the scale factor is 0. In this example, let time be -1.
4. Hubble did not find special directions. The universe is isotropic.
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Puzzle

Can  galaxies  go  faster  than  light?  H=70km/s/Mpc.  (A  parsec  is  180μ3600 êpAU.)  A  galaxy  is  at  6,000Mpc.  Its  speed
v =HD = 420, 000 kmês is faster than the speed of light. How is that possible? What could happen if I could go faster than the
speed of light?
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Isotropic & homogeneous spaces

|

The universe is the same everywhere (homogeneous) and the same in all directions (isotropic). 

Simplicio: We see light from distant galaxies that were forming stars for the first time. There is not the same as here. 

Can you think of a 2-d homogeneous & isotropic space?
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Friedman-Robertson-Walker spaces

A 3-d space that is homogeneous and isotropic has a special choice of time. A choice of coordinates is
Ht, r, q, fL

and the metric is
ds2 = -dt2 + aHtL2 A d r2 ëI1 - Hr êr0L2M + r2Idq2 + sin2 q df2ME.

Hr, q, fL is called the comoving coordinate. A galaxy stays at the same position; time changes.

r0
2 can have any value, positive or negative.

aHtL is called the expansion parameter. Descibe the effect of the expansion parameter.

|
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What is r0
2 ?

ds2 = -dt2 + aHtL2 A d r2 ëI1 - Hr êr0L2M + r2Idq2 + sin2 q df2ME

Let time be fixed. Consider the spatial part of the metric. 
d r2 ëI1 - Hr êr0L2M + r2Idq2 + sin2 q df2M

Suppose r0
2 Ø¶. What is the space?

Suppose r0
2 > 0. What is the space?

Map 3-d space into 2-d by supressing f. The space is the 2-d surface of a sphere. I draw a slice.

In[13]:= fig@D
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Define sinx = r êr0. r0 d x = d r êcosx = d rëA1 - Hr êr0L2E. Therefore

ds2 = r0
2 d latitude2 + r2 d longitude2.

Lesson: If r0
2 > 0, then r0 is the radius of curvature of the 3-d space. If r0

2 < 0, the space is like a saddle, and the space is infinite.
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Hubble's Law

Consider the case r2 ` r0
2 . The radial distance of a galaxy at r is

D HtL = aHtL r.
The galaxy moves away at speed 

v = d
d t

DHtL = 1
a

d a HtL
d t

a r = 1
a

d a HtL
d t

D.

Define Hubble's constant H = 1
a

d a HtL
d t

. Then

v = H D
This is called Hubble's Law. 
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