Name:

Your code is: AAAAAA

Put your name here:

Keep this exam CLOSED until advised by the instructor.
60 minute long closed book exam.
Fill out the bubble sheet: last name, first initial, student number, section number and code.

A two-sided 8.5 by 11 handwritten help sheet is allowed.
When done, hand in your test and your bubble sheet.
Thank you and good luck!
Possibly useful constants:

- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
- $\mathrm{R}=0.0821 \mathrm{~L}^{*} \mathrm{~atm} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)=8.31 \mathrm{~J} /\left(\mathrm{mol}^{*} \mathrm{~K}\right)$

Possibly useful Moments of Inertia:

- Solid homogeneous sphere: $\mathrm{I}_{\mathrm{CM}}=(2 / 5) \mathrm{MR}^{2}$
- Thin spherical shell: $\mathrm{I}_{\mathrm{CM}}=(2 / 3) \mathrm{MR}^{2}$
- Thin uniform rod, axis perpendicular to length: $\mathrm{I}_{\mathrm{CM}}=$ $(1 / 12) \mathrm{ML}^{2}$
- Solid homogeneous cylinder, axis through center of mass and parallel to length: $\mathrm{I}_{\mathrm{CM}}=(1 / 2) \mathrm{MR}^{2}$

Useful information for Geometry:

- Volume of a sphere: $\mathrm{V}=(4 / 3) \pi \mathrm{r}^{3}$
- Volume of a cylinder: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

7 pt There are 1,609 meters in one mile. How far in miles would a schoolbus go in 6 hours, 10 minutes at $90 \mathrm{~km} / \mathrm{h}$?

$\mathbf{1 . A} \bigcirc$	184	$\mathbf{B} \bigcirc$	215	$\mathbf{C} \bigcirc$	252
$\mathbf{D} \bigcirc$	$\mathbf{D} \bigcirc 5$				
$\mathbf{E} \bigcirc$	345	$\mathbf{F} \bigcirc$	404	$\mathbf{G} \bigcirc 472$	$\mathbf{H} \bigcirc$

7 pt A right cylinder has a radius r of 13.7 mm and a height h of 31.2 mm . What is the volume of the cylinder in cm^{3} ?

$\mathbf{2 . A} \bigcirc 1.84 \times 10^{1}$

$\mathbf{B} \bigcirc 1.84 \times 10^{2}$	$\mathbf{C} \bigcirc 1.84 \times 10^{3}$	
$\mathbf{E} \bigcirc 1.84 \times 10^{4}$	$\mathbf{F} \bigcirc 1.84 \times 10^{5}$	
$\mathbf{H} \bigcirc 1.84 \times 10^{7}$		

$12 p t$ Consider $\mathrm{A}=67 \mathrm{~m} / \mathrm{s}$ and $\mathrm{B}=8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. Identify if the operations below are possible or not. If an operation is possible, identify whether or not the correct answer is given.
\triangleright You can add A and B, and get $7.50 \times 10^{1} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$.
3. $\mathbf{A} \bigcirc$ This operation is impossible
$\mathbf{B} \bigcirc$ This operation is possible, but the answer is false $\mathbf{C} \bigcirc$ This is correct
\triangleright You can multiply A and B, and get $5.36 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
4. $\mathbf{A} \bigcirc$ This operation is impossible
$\mathbf{B} \bigcirc$ This operation is possible, but the answer is false $\mathbf{C} \bigcirc$ This is correct
\triangleright You can divide A by B , and get $8.38 \mathrm{~kg}^{-1}$.
5. $\mathbf{A} \bigcirc$ This operation is impossible
$\mathbf{B} \bigcirc$ This operation is possible, but the answer is false
$\mathbf{C} \bigcirc$ This is correct
$8 p t$ Two balls are thrown simultaneously with the same speed of $26 \mathrm{~m} / \mathrm{s}$. The first ball is thrown at an angle of 31° relative to the horizontal. The second ball is thrown at an angle of 59° relative to the horizontal. Select True or False for the following statements.
\triangleright Both balls have the same acceleration during their flight.
6. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The second ball has a higher speed at its maximum height.
7. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright Both balls have the same range.
8. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
$7 p t$ An artillery shell is launched on a flat, horizontal field at an angle of $\alpha=44.3^{\circ}$ with respect to the horizontal and with an initial speed of $\mathrm{v}_{0}=314 \mathrm{~m} / \mathrm{s}$. What is the horizontal distance covered by the shell after 4.29 s of flight?

```
(in m)
\begin{tabular}{rlll}
\(\mathbf{9 . A} \bigcirc 7.25 \times 10^{2}\) & \(\mathbf{B} \bigcirc 9.64 \times 10^{2}\) & \(\mathbf{C} \bigcirc 1.28 \times 10^{3}\) \\
\(\mathbf{D} \bigcirc 1.71 \times 10^{3}\) & \(\mathbf{E} \bigcirc 2.27 \times 10^{3}\) & \(\mathbf{F} \bigcirc\) & \(3.02 \times 10^{3}\) \\
\(\mathbf{G} \bigcirc 4.01 \times 10^{3}\) & \(\mathbf{H} \bigcirc 5.34 \times 10^{3}\) & &
\end{tabular}
```

$7 p t$ What is the height of the shell at this moment? (in m)

$$
\begin{array}{rlll}
\mathbf{1 0 . A} \bigcirc 1.92 \times 10^{2} & \mathbf{B} \bigcirc 2.79 \times 10^{2} & \mathbf{C} \bigcirc 4.05 \times 10^{2} \\
\mathbf{D} \bigcirc 5.87 \times 10^{2} & \mathbf{E} \bigcirc & 8.51 \times 10^{2} & \mathbf{F} \bigcirc 1.23 \times 10^{3} \\
\mathbf{G} \bigcirc 1.79 \times 10^{3} & \mathbf{H} \bigcirc 2.59 \times 10^{3} & &
\end{array}
$$

An $\mathrm{m}=9.8 \mathrm{~kg}$ mass is suspended on a string which is pulled upward by a force of $\mathrm{F}=101.5 \mathrm{~N}$. (See figure.) If the upward velocity of the mass is $4.0 \mathrm{~m} / \mathrm{s}$ right now, then what is the velocity 6.0 s later?
(in m/s)

$\mathbf{1 1 . A} \bigcirc 5.84$	$\mathbf{B} \bigcirc 7.31$	$\mathbf{C} \bigcirc 9.13$
$\mathbf{D} \bigcirc 1.14 \times 10^{1}$	$\mathbf{E} \bigcirc 1.43 \times 10^{1}$	$\mathbf{F} \bigcirc 1.78 \times 10^{1}$
$\mathbf{G} \bigcirc 2.23 \times 10^{1}$	$\mathbf{H} \bigcirc 2.79 \times 10^{1}$	

D 1.14×10^{1}
$\mathbf{H} \bigcirc 2.79 \times 10^{1}$
$12 p t$ A frictionless, massless pulley is attached to the ceiling, in a gravity field of $9.81 \mathrm{~m} / \mathrm{s}^{2}$.

Mass M_{2} is greater than mass m_{1}. The quantities T_{1}, T_{2}, T_{3} and g are magnitudes. Select greater than, less than or equal to.

[^0]7 pt A 9.650 kg block is on a ramp and is attached to a 1.374 kg mass by a light string as shown in the diagram below. The string passes over a pulley and the ramp is inclined at an angle of 15 degrees aith reaspect to the horizontal.

If the block on the ramp is moving DOWN the ramp at constant velocity, what is the coefficient of kinetic friction between the block on the ramp and the ramp?
$16 . \mathbf{A} \bigcirc 0.016$
$\mathbf{E} \bigcirc 0.051$
B \bigcirc
0.022
$\mathbf{C} \bigcirc 0.029$
D 0.039
G $\bigcirc 0.091$
$\mathbf{H} \bigcirc 0.121$

Sam walks due east at a speed of $1.15 \mathrm{~m} / \mathrm{s}$ for 458 seconds, turns and walks $\theta_{2}=37.3^{\circ}$ north of east at a speed of 1.15 m / s for 706 seconds. Sam's trip is depicted in the diagram below.

$7 p t$ What total distance did Sam walk from start to finish? (in m)

$\mathbf{1 7 . A} \bigcirc$	439	$\mathbf{B} \bigcirc$	637	$\mathbf{C} \bigcirc 923$	$\mathbf{D} \bigcirc 1339$
$\mathbf{E} \bigcirc$	1941	$\mathbf{F} \bigcirc$	2814	$\mathbf{G} \bigcirc 4081$	$\mathbf{H} \bigcirc$

$7 p t$ What is the magnitude of Sam's total displacement relative to the staring position? (in m)

18.A $\bigcirc 540$	$\mathbf{B} \bigcirc$	719	$\mathbf{C} \bigcirc$	956	$\mathbf{D} \bigcirc 1272$
$\mathbf{E} \bigcirc$	1691	$\mathbf{F} \bigcirc$	2249	$\mathbf{G} \bigcirc$	2992

$6 p t$ Relative to the starting position, in what direction $\left(\theta_{\text {NET }}\right.$ measured north of east) did Sam finish the walk? (in deg)

```
19.A\bigcirc20.5 B}\bigcirc21.1 \mathbf{C}\bigcirc21.6 \mathbf{D}\bigcirc22.
```

$\mathbf{E} \bigcirc 22.8 \quad \mathbf{F} \bigcirc 23.3 \quad \mathbf{G} \bigcirc 23.9 \quad \mathbf{H} \bigcirc 24.5$

Printed from LON-CAPA@MSU
Licensed under GNU General Public License

[^0]: $\triangleright \mathrm{m}_{1} \mathrm{~g}+\mathrm{M}_{2} \mathrm{~g}$ is \qquad T_{3}
 12. $\mathbf{A} \bigcirc$ Greater than $\mathbf{B} \bigcirc$ Less than
 $\mathbf{C} \bigcirc$ Equal to
 $\triangleright \mathrm{T}_{1}$ is \qquad T_{2}.
 13. $\mathbf{A} \bigcirc$ Greater than $\mathbf{B} \bigcirc$ Less than $\mathbf{C} \bigcirc$ Equal to
 $\triangleright \mathrm{M}_{2} \mathrm{~g}$ is \qquad T_{2}.
 14. $\mathbf{A} \bigcirc$ Greater than $\mathbf{B} \bigcirc$ Less than $\mathbf{C} \bigcirc$ Equal to

