Name:

Your code is: AAAAAA

Put your name here:

Keep this exam **CLOSED** until advised by the instructor.

60 minute long closed book exam.

Fill out the bubble sheet: last name, first initial, student number, section number and **code**.

A two-sided 8.5 by 11 handwritten help sheet is allowed.

When done, hand in your test and your bubble sheet.

Thank you and good luck!

Possibly useful constants:

- $g = 9.81 \text{ m/s}^2$
- $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$
- $\sigma = 5.67 \times 10^{-8} \text{ W/(m^2K^4)}$
- $R = 0.0821 L^*atm/(mol^*K) = 8.31 J/(mol^*K)$

Possibly useful Moments of Inertia:

- Solid homogeneous sphere: ${\rm I}_{\rm CM} = (2/5) {\rm M} {\rm R}^2$
- Thin spherical shell: $I_{CM} = (2/3)MR^2$
- Thin uniform rod, axis perpendicular to length: $I_{\rm CM} = (1/12) {\rm ML}^2$
- Solid homogeneous cylinder, axis through center of mass and parallel to length: $I_{\rm CM}=(1/2)MR^2$

Useful information for Geometry:

- Volume of a sphere: $V = (4/3)\pi r^3$
- Volume of a cylinder: $V = \pi r^2 h$

7 pt There are 1,609 meters in one mile. How far in miles would a schoolbus go in 6 hours, 10 minutes at 90 km/h?

7 pt A right cylinder has a radius r of 13.7 mm and a height h of 31.2 mm. What is the volume of the cylinder in cm³?

12 pt Consider A=67 m/s and B=8 kg·m/s. Identify if the operations below are possible or not. If an operation is possible, identify whether or not the correct answer is given.

- \triangleright You can add A and B, and get $7.50 \times 10^1 \text{ kg} \cdot \text{m}^2/\text{s}^2$.
 - **3**. **A** This operation is impossible

B \bigcirc This operation is possible, but the answer is false **C** \bigcirc This is correct

 \triangleright You can multiply A and B, and get 5.36×10^2 kg·m/s.

- **4**. **A** This operation is impossible
 - $\mathbf{B} \Breve{\bigcirc}$ This operation is possible, but the answer is false $\mathbf{C} \Breve{\bigcirc}$ This is correct

 \triangleright You can divide A by B, and get 8.38 kg⁻¹.

5. **A** This operation is impossible

B \bigcirc This operation is possible, but the answer is false **C** \bigcirc This is correct

8 pt Two balls are thrown simultaneously with the same speed of 26 m/s. The first ball is thrown at an angle of 31° relative to the horizontal. The second ball is thrown at an angle of 59° relative to the horizontal. Select True or False for the following statements.

- ▷ Both balls have the same acceleration during their flight.
 6. A○ True B○ False
- ▷ The second ball has a higher speed at its maximum height.
 7. A○ True B○ False
- $\triangleright \text{ Both balls have the same range.}$ **8**. **A** \bigcirc True **B** \bigcirc False

7 pt An artillery shell is launched on a flat, horizontal field at an angle of $\alpha = 44.3^{\circ}$ with respect to the horizontal and with an initial speed of $v_0 = 314$ m/s. What is the horizontal distance covered by the shell after 4.29 s of flight? (in m)

$9.A\bigcirc~7.25\times10^2$	\mathbf{B} 9.64 × 10 ²	$\mathbf{C}\bigcirc 1.28 \times 10^3$
$\mathbf{D}\bigcirc 1.71 \times 10^3$	\mathbf{E} $\bigcirc 2.27 \times 10^3$	\mathbf{F} 3.02×10^3
\mathbf{G} $\bigcirc 4.01 \times 10^3$	$\mathbf{H}\bigcirc 5.34 \times 10^3$	

7 pt What is the he	eight of the shell a	at this moment?
(in m)		
$10.A\bigcirc 1.92\times 10^2$	$\mathbf{B}\bigcirc~2.79 imes10^2$	$\mathbf{C}\bigcirc 4.05 \times 10^2$
$\mathbf{D}\bigcirc~5.87 imes10^2$	\mathbf{E} 0.51×10^2	\mathbf{F} 1.23×10^3
$\mathbf{G}\bigcirc 1.79 \times 10^3$	$\mathbf{H}\bigcirc 2.59 \times 10^3$	

An m = 9.8 kg mass is suspended on a string which is pulled upward by a force of F = 101.5 N. (See figure.) If the upward velocity of the mass is 4.0 m/s right now, then what is the velocity 6.0 s later? (in m/s)

$11.A\bigcirc 5.84$	B 〇 7.31	$\mathbf{C}\bigcirc$ 9.13
$\mathbf{D}\bigcirc 1.14 \times 10^1$	\mathbf{E} 1.43×10^1	\mathbf{F} \bigcirc 1.78×10^1
$\mathbf{G}\bigcirc~2.23 imes10^1$	$\mathbf{H}\bigcirc~2.79 imes10^{1}$	

12 pt A frictionless, massless pulley is attached to the ceiling, in a gravity field of 9.81 m/s².

Mass $\rm M_2$ is greater than mass $\rm m_1.$ The quantities $\rm T_1,$ $\rm T_2,$ $\rm T_3$ and g are magnitudes. Select greater than, less than or equal to.

 $\label{eq:constraint} \begin{array}{c|c} \triangleright \ M_2g \ is \underline{\qquad} T_2. \\ \textbf{14.} \ \textbf{A} \bigcirc \ Greater \ than \\ \textbf{C} \bigcirc \ Equal \ to \end{array} \textbf{B} \bigcirc \ \text{Less than} \\ \end{array}$

 $\boxed{6 \ pt}$ The block on the incline shown in the diagram below is observed moving DOWN the incline.

▷ Which free-body diagram most accurately depicts all forces acting on the block as it moves DOWN the incline? (f represents a frictional force, n a normal force, m the mass of the block and g the acceleration due to gravity)

CODE - AAAAAA - PHY231C, Summer 2008 - PHY 23 7 EXAM 1

 $\boxed{7 \text{ } pt}$ A 9.650 kg block is on a ramp and is attached to a 1.374 kg mass by a light string as shown in the diagram below. The string passes over a pulley and the ramp is inclined at an angle of 15 degrees aith reaspect to the horizontal.

If the block on the ramp is moving **DOWN** the ramp at constant velocity, what is the coefficient of kinetic friction between the block on the ramp and the ramp?

16.A 0.016	$\mathbf{B}\bigcirc 0.022$	$\mathbf{C}\bigcirc~0.029$	$\mathbf{D}\bigcirc~0.039$
$E\bigcirc 0.051$	\mathbf{F} 0.068	$\mathbf{G}\bigcirc~0.091$	$\mathbf{H}\bigcirc 0.121$

Sam walks due east at a speed of 1.15 m/s for 458 seconds, turns and walks $\theta_2{=}37.3$ ° north of east at a speed of 1.15 m/s for 706 seconds. Sam's trip is depicted in the diagram below.

7 pt What total distance did Sam walk from start to finish? (in m)

17.A() 439	\mathbf{B} 637	\mathbf{C} 923	\mathbf{D} 1339
\mathbf{E} 1941	\mathbf{F} 2814	$\mathbf{G}\bigcirc 4081$	$\mathbf{H}\bigcirc 5917$

 $7 \ pt$ What is the magnitude of Sam's total displacementrelative to the staring position? (in m)**18.A** \bigcirc 540 **B** \bigcirc 719 **C** \bigcirc 956 **D** \bigcirc 1272

6 pt	Relative t	o the startin	g position,	in what direction
$\overline{(\theta_{\text{NET}})}$	measured	north of east)	did Sam fi	nish the walk? (in
$\mathtt{deg})$				
	~	~	~	

19.A 〇 20.5	$\mathbf{B}\bigcirc~21.1$	$\mathbf{C}\bigcirc~21.6$	\mathbf{D} 22.2
\mathbf{E} 22.8	F 〇 23.3	$\mathbf{G}\bigcirc~23.9$	$\mathbf{H}\bigcirc 24.5$

```
Printed from LON-CAPA©MSU
```

Licensed under GNU General Public License