Name:

Your code is: AAAAAA

Put your name here:

Keep this exam CLOSED until advised by the instructor.
Fill out the bubble sheet: last name, first initial, student number, section number and code.

60 minute long closed book exam.
A two-sided 8.5 by 11 handwritten help sheet is allowed.
When done, hand in your bubble sheet and your exam.
Possibly useful constants:

- $\mathrm{k}_{\mathrm{e}}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
- $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{As} /(\mathrm{Vm})$
- $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Vs} /(\mathrm{Am})$
- $\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- $\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}$
- $\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
- $\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}=0.511 \mathrm{MeV}$
- $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$
- $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eVs}$
- $\mathrm{hc}=1240 \mathrm{eVnm}$
- $\sigma=5.67 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}^{4}\right)$
- Wien's constant $=2.898 \times 10^{-3} \mathrm{Km}$
- $\mathrm{R}_{\mathrm{H}}=1.097 \times 10^{7} 1 / \mathrm{m}$
- $\mathrm{E}_{0}=13.6 \mathrm{eV}$
- $\mathrm{a}_{0}=0.529$ Angstrom
- $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
- $1 \operatorname{AMU}(1 \mathrm{u})=931.494 \mathrm{MeV} / \mathrm{c}^{2}=1.67 \times 10^{-27} \mathrm{~kg}$
- \times Field directly into page.
- - Field directly out of page
- 1 pico $(\mathrm{p})=10^{-12}$

12 pt Two positive point charges both with an electric charge of \mathbf{Q} are at a distance of \mathbf{d} from each other. The magnitude of the force between the charges is \mathbf{F}. Select True or False for the following statements.
\triangleright If one of the charges is doubled in size, then the magnitude of the force doubles.

1. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If both of the charges are doubled in size, then the magnitude of the force remains the same.
2. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If the distance between the charges is doubled, then the magnitude of the force doubles.
3. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

10 pt A parallel plate capacitor is charged up to a potential difference of 140 V . An electron is held on the negative plate and then it is released from rest. What is the kinetic energy of the electron when it hits the positive plate?
(in eV)

$$
\begin{array}{rlll}
\mathbf{4 . A} \bigcirc 4.59 \times 10^{1} & \mathbf{B} \bigcirc 6.66 \times 10^{1} & \mathbf{C} \bigcirc 9.66 \times 10^{1} \\
\mathbf{D} \bigcirc 1.40 \times 10^{2} & \mathbf{E} \bigcirc 2.03 \times 10^{2} & \mathbf{F} \bigcirc 2.94 \times 10^{2} \\
\mathbf{G} \bigcirc 4.27 \times 10^{2} & \mathbf{H} \bigcirc 6.19 \times 10^{2} & &
\end{array}
$$

$12 p t$

Figure 1
Figure 2

Consider two separate systems, each with four charges of magnitude \mathbf{q} arranged in a square of length L as shown above. Points a and \mathbf{c} are in the center of their squares while points \mathbf{b} and \mathbf{d} are half way between the lower two charges. Select True or False for the following statements.
\triangleright The electric potential at \mathbf{c} is zero.
5. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The direction of the electric field at \mathbf{b} is to the left.
6. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The electric field at a is NOT zero.
7. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

Consider the system of four charges in the diagram below. Each charge is 43 cm from the origin. $\mathrm{Q} 1=9.02 \mu \mathrm{C}, \mathrm{Q} 2=$ $9.02 \mu \mathrm{C}, \mathrm{Q} 3=9.02 \mu \mathrm{C}$ and $\mathrm{Q} 4=-9.02 \mu \mathrm{C}$

$9 p t$ What is the electric potential at the origin in V ?

$$
\begin{array}{rlll}
\mathbf{8 . A} \bigcirc 1.24 \times 10^{5} & \mathbf{B} \bigcirc 1.80 \times 10^{5} & \mathbf{C} \bigcirc 2.60 \times 10^{5} \\
\mathbf{D} \bigcirc 3.78 \times 10^{5} & \mathbf{E} \bigcirc 5.47 \times 10^{5} & \mathbf{F} \bigcirc 7.94 \times 10^{5} \\
\mathbf{G} \bigcirc 1.15 \times 10^{6} & \mathbf{H} \bigcirc 1.67 \times 10^{6} & &
\end{array}
$$

$9 p t$ What is the magnitude of the electric field at the origin in N/C?

$$
\begin{array}{rlll}
\mathbf{9 . A} \bigcirc 5.48 \times 10^{5} & \mathbf{B} \bigcirc 6.41 \times 10^{5} & \mathbf{C} \bigcirc 7.51 \times 10^{5} \\
\mathbf{D} \bigcirc 8.78 \times 10^{5} & \mathbf{E} \bigcirc 1.03 \times 10^{6} & \mathbf{F} \bigcirc 1.20 \times 10^{6} \\
\mathbf{G} \bigcirc 1.41 \times 10^{6} & \mathbf{H} \bigcirc 1.65 \times 10^{6} & &
\end{array}
$$

9 pt Consider the two circuits in the diagram below. Each circuit shows two capacitors and a battery. C_{1} and C_{2} are capacitances and V is a voltage.

For each statement below, select True or False.
$\triangleright \mathrm{C}_{2}$ is greater than the equivalent capacitance of circuit 2.
10. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The energy stored in the capacitors in circuit 1 is greater than the energy stored in the capacitors in circuit 2.
11. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright The equivalent capacitance of circuit 2 is less than the equivalent capacitance of circuit 1
12. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

A charge $\mathrm{Q} 1=-34.20 \mu \mathrm{C}$ is fixed in place as shown in the diagram below. A second charge Q2 is attached to a massless string which makes an angle of 23° with respect to the vertical. Q2 is not moving (and not accelerating) and is located $\mathrm{d}=45.50 \mathrm{~cm}$ directly to the right of Q1. Q2 has a mass of 9.2 kg .

$10 p t$ What is the magnitude of the charge on Q 2 (in $\mu \mathrm{C})$?

$$
\begin{array}{rlll}
\mathbf{1 3 .} \mathbf{A} \bigcirc 2.29 \times 10^{1} & \mathbf{B} \bigcirc 2.59 \times 10^{1} & \mathbf{C} \bigcirc 2.93 \times 10^{1} \\
\mathbf{D} \bigcirc 3.31 \times 10^{1} & \mathbf{E} \bigcirc 3.74 \times 10^{1} & \mathbf{F} \bigcirc & 4.22 \times 10^{1} \\
\mathbf{G} \bigcirc 4.77 \times 10^{1} & \mathbf{H} \bigcirc 5.39 \times 10^{1} & &
\end{array}
$$

$3 p t$

\triangleright The sign of charge Q2 is positive.
14. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

$4 p t$

When the distance between the centers of two charged spheres is increased by 10%, how much does the magnitude of the electric force on one of the spheres change?
15. A \bigcirc The force must increase by about 5%.

B The force must increase by 10%.
$\mathbf{C} \bigcirc$ The force must decrease by about 5%.
D The force must increase by about 20%.
$\mathbf{E} \bigcirc$ You have to know the details on the charge on the spheres to answer.
$\mathbf{F} \bigcirc$ The force must decrease by about 20%.
$\mathbf{G} \bigcirc$ If the two spheres both have the same sign charge, the force decrease about 20%, but if they have opposite charge it increases by about 20%.
$\mathbf{H} \bigcirc$ The force must decrease by 10%.
$\mathbf{I} \bigcirc$ If the two spheres both have the same sign charge, the force increase about 20%, but if they have opposite charge it decrease by about 20%.
$12 p t$ Consider two uniformly charged plates as shown in the figure below. The magnitudes of the charges are equal.
a
b
c

Select True or False for each of the following statements.
\triangleright If both plates are negatively charged, the electric field at c points towards the top of the page.
16. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If both plates are oppositely charged, there is no electric field at \mathbf{b}.
17. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False
\triangleright If both plates are oppositely charged, there is no electric field at a.
18. $\mathbf{A} \bigcirc$ True $\mathbf{B} \bigcirc$ False

10 pt A parallel plate capacitor has an area of $627 \mathrm{~cm}^{2}$, the plates are separated by 0.15 mm and the region between the plates is filled with a material having a dielectric constant of 165. A battery is used to charge the capatior to 228 volts. How much energy (in J) is stored in the capacitor?

$$
\begin{array}{rlll}
\mathbf{1 9 . A} \bigcirc 6.74 \times 10^{-3} & \mathbf{B} \bigcirc 8.97 \times 10^{-3} & \mathbf{C} \bigcirc 1.19 \times 10^{-2} \\
\mathbf{D} \bigcirc 1.59 \times 10^{-2} & \mathbf{E} \bigcirc & 2.11 \times 10^{-2} & \mathbf{F} \bigcirc \\
\mathbf{G} \bigcirc 3.81 \times 10^{-2} \\
\mathbf{G} .73 \times 10^{-2} & \mathbf{H} \bigcirc 4.96 \times 10^{-2} & &
\end{array}
$$

[^0]
[^0]: Printed from LON-CAPA@MSU Licensed under GNU General Public License

