Name:

1 pt What is the wavelength of radiation emitted when an electron goes from the n = 7 to the n = 4 level of the Bohr hydrogen atom? Give your answer in nm.

1 pt Select True or False for the following questions about radioactive decay.

- $\label{eq:based} \begin{array}{ll} \triangleright \mbox{ In alpha decay, an electron is emitted.} \\ \textbf{2. } \textbf{A} \bigcirc \mbox{ True } \textbf{B} \bigcirc \mbox{ False} \end{array}$
- \triangleright In gamma decay, a neutron is emitted. **3**. **A** \bigcirc True **B** \bigcirc False
- ▷ In beta decay, an electron or a positron is emitted.
 4. A○ True B○ False

<u>1 pt</u> ¹⁴C has a half life of 5730 years. If 8.28×10^6 decays are observed during one second from a sample, how many μg of ¹⁴C are in the sample? (Remember, there are 6.02×10^{23} atoms in 14g of ¹⁴C.)

5. A 44.42	$\mathbf{B}\bigcirc 50.20$	$\mathbf{C}\bigcirc$ 56.73
$\mathbf{D}\bigcirc 64.10$	E 〇 72.43	$\mathbf{F}\bigcirc 81.85$
$\mathbf{G}\bigcirc 92.49$	$\mathbf{H}\bigcirc$ 104.51	

1 pt The resonant LC circuit in your radio contains a coil with L = 0.133 mH inductance. By turning the radio knob you adjust the capacitor to C = 27.7 pF. What is the wavelength of the radio waves your radio is receiving? (*in* m)

$6.A\bigcirc 9.15\times 10^1$	$\mathbf{B}\bigcirc 1.14 \times 10^2$	$\mathbf{C}\bigcirc 1.43 \times 10^2$
$\mathbf{D}\bigcirc 1.79 \times 10^2$	\mathbf{E} 2.23 × 10 ²	$\mathbf{F}\bigcirc~2.79 imes10^2$
$\mathbf{G}\bigcirc 3.49 \times 10^2$	\mathbf{H} \bigcirc 4.36 $\times 10^2$	

1 pt A spaceship travels past an observer at a speed of 0.669 c. The length of the spaceship is 118 m in its rest frame. What is the length of the ship in the reference frame of the observer?

(in m)

1 pt The mean lifetime of muons in their rest frame is 2.20 μ s. Now consider a muon traveling through the Earth's atmosphere at a speed of 0.996 c. What is the mean distance traveled before it decays? (in km)

8.A \bigcirc 1.64 × 10⁻¹ B \bigcirc 6.57 × 10⁻¹ C \bigcirc 1.31 D \bigcirc 1.97 E \bigcirc 4.27 F \bigcirc 7.36 G \bigcirc 1.64 × 10¹ H \bigcirc 1.91 × 10¹

<u>1 pt</u> What is the magnitude of the electrostatic repulsive force (in N) between two protons in the nucleus of an atom if they are separated by 8.1 fm? (1 meter = 1.0×10^{-15} fm)

	-	/	
9.A 〇 1.4	$\mathbf{B}\bigcirc 1.8$	$\mathbf{C}\bigcirc 2.2$	\mathbf{D} 2.8
E 〇 3.5	\mathbf{F} 4.4	$\mathbf{G}\bigcirc 5.5$	H 〇 6.9

1 pt Due never	
?	A projectile is observed during a very short time of $3.4 \cdot 10^{-24}$ s? What is its minimum energy uncertainty in nJ?
$\begin{array}{c c} {\bf 10.A} \bigcirc \ 1.13 \times 10^{-2} \\ {\bf D} \bigcirc \ 1.81 \times 10^{-2} \\ {\bf G} \bigcirc \ 2.91 \times 10^{-2} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$1 \ pt$

Select True or False for each of the following statements.

▷ In the quantum mechanical hydrogen atom, electrons in the n=2 orbit all have the same angular momentum. **12.** A True B False

Printed from LON-CAPA©MSU