CODE - AAAAAA - PHY231C, Summer 2008 - PHY 23 1 EXAM LAST CHAPTERS

Name:

1 pt The speed of sound in air is 338 m/s. If an audible sound has a frequency of 12100 Hz, what is its wavelength in meters?

1 pt Jill is listening to a horn. She knows the frequency of the horn is 300 Hz when both she and the horn are at rest. If she hears a pitch of 330 Hz, there are clearly several possibilities. Answer True or False to each staement below.

- $\triangleright \text{ Both can be moving and have different speeds.}$ **2. A** \bigcirc True **B** \bigcirc False
- ▷ Jill can be moving away from the horn which is at rest. **3**. **A** True **B** False
- \triangleright The horn can be moving towards the Jill who is at rest. **4**. **A** True **B** False

1 pt A 1.30 kg mass on a spring oscillates horizontal frictionless surface. The motion of the mass is described by the equation:

$$x = 0.26\cos(3.15t)$$

In the equation, x is measured in meters and t in seconds. What is the maximum energy stored in the spring during an oscillation?

 $\begin{array}{cccccccc} {\bf 5.A} & 3.86 \times 10^{-1} & {\bf B} & 4.36 \times 10^{-1} & {\bf C} & 4.93 \times 10^{-1} \\ {\bf D} & 5.57 \times 10^{-1} & {\bf E} & 6.29 \times 10^{-1} & {\bf F} & 7.11 \times 10^{-1} \\ {\bf G} & 8.03 \times 10^{-1} & {\bf H} & 9.08 \times 10^{-1} \end{array}$

1 pt A steel piano wire, of length 0.650 m and mass 6.00 g is stretched under a tension of 490.0 N. What is the speed of transverse waves on the wire?

(in m/s)

6.A \bigcirc 1.30 × 10 ²	\mathbf{B} (1.73×10^2)	\mathbf{C} $\bigcirc 2.30 \times 10^2$
\mathbf{D} \bigcirc 3.06 $\times 10^2$	\mathbf{E} 4.08×10^2	$\mathbf{F}\bigcirc 5.42 \times 10^2$
\mathbf{G} \bigcirc 7.21 \times 10 ²	\mathbf{H} 9.59×10^2	

1 pt A 60 year old person has a threshold of hearing of 89.0 dB for a sound with frequency f=10,000 Hz. By what factor must the intensity of a sound wave of that frequency, audible to a typical young adult, (sound level=43.0 dB) be increased so that it is heard by the older person.

7.A \bigcirc 1.69 × 10 ⁴	$\mathbf{B}\bigcirc~2.25 imes10^4$	$\mathbf{C}\bigcirc~2.99\times10^4$
$\mathbf{D}\bigcirc 3.98 \times 10^4$	\mathbf{E} 5.29 × 10 ⁴	\mathbf{F} 7.04 × 10 ⁴
\mathbf{G} $\bigcirc 9.37 \times 10^4$	\mathbf{H} $\bigcirc 1.25 \times 10^5$	

The curve represents an object in simple harmonic motion. Match the points on the curve to the velocity and acceleration of the object.

 \triangleright The velocity is positive, and the acceleration is negative.

- \triangleright The velocity is zero, and the acceleration is positive.
 - 9. A Point A B Point B C Point C

 \triangleright The velocity is zero, and the acceleration is negative.

 \triangleright The velocity is negative, and the acceleration is zero.

Printed from LON-CAPA©MSU Li