Physics 472 - Spring 2010

Homework \#5, due Friday, February 19

(Point values are in parentheses.)

1. [7] On a previous problem set you found the matrices that represent the operators for the three component of spin, for a spin-1 particle. They are:

$$
\hat{S}_{x}=\left(\begin{array}{ccc}
0 & \hbar / \sqrt{2} & 0 \\
\hbar / \sqrt{2} & 0 & \hbar / \sqrt{2} \\
0 & \hbar / \sqrt{2} & 0
\end{array}\right), \hat{S}_{y}=\left(\begin{array}{ccc}
0 & -i \hbar / \sqrt{2} & 0 \\
i \hbar / \sqrt{2} & 0 & -i \hbar / \sqrt{2} \\
0 & i \hbar / \sqrt{2} & 0
\end{array}\right), \hat{S}_{z}=\left(\begin{array}{ccc}
\hbar & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -\hbar
\end{array}\right)
$$

A beam of spin-1 atoms is prepared in the initial spin state: $|\chi\rangle=\left(\begin{array}{c}-3 i / 4 \\ \sqrt{6} / 4 \\ i / 4\end{array}\right)$.
a) [1] If you send the beam into a SG apparatus with its spin axis oriented along the z-direction, calculate the probabilities associated with each of the three output ports of the apparatus, i.e. calculate the probabilities that measurement of S_{z} will produce $\hbar, 0$, and $-\hbar$. (You should be able to do this just by looking at $|\chi\rangle$, with little calculation.)
b) [2] Now change the spin orientation of your SG apparatus to the x-axis, and calculate the probabilities associated with each of the three output ports. This time you will need to do a real calculation.
c) [2] Do the same thing with the SG apparatus oriented along the y-axis.
d) [2] Calculate the expectation values, $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle$, and $\left\langle S_{z}\right\rangle$, using the probabilities you calculated in parts (a) - (c). Check your answers using direct matrix multiplication.
2. [4] Griffiths problem 6.1
3. [4] Griffiths problem 6.2. The easiest way to do part (b) is to express the \hat{x} operator in terms of \hat{a} and \hat{a}^{+}, as we have done in class.
4. [5] Griffiths problem 6.4. You do not have to sum the series in part (a), but try to if you want a challenge.

