
Physics 472 – Spring 2010 
 

Homework #6, due Friday, February 26 
(Point values are in parentheses.) 

 
 
1.  [7] Griffiths problem 6.7.  For part (b), do not just use equation 6.27.  Instead, write the 2 x 2 

matrix representation of H ′  in the basis n  and n− , where ( ) Linx
n e

L
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other words, evaluate the four elements of the matrix that Griffiths calls W: 
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 After you evaluate these four numbers, find the eigenvalues and eigenvectors of the matrix.  To 

simplify your calculation, I suggest you factor out the quantity 
L

aV π0−  from the matrix, and 

then call the off-diagonal terms nδ .  (You should obtain .)  You will find the 

following formula useful, which we derived in PHY471:  
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get to part (c), don’t bother showing that using Eqn. (6.9) with the correct states gives you the 
correct energies.  This is equivalent to showing that the eigenvalues you already calculated are 
just the diagonal elements of the diagonalized matrix!  The answer to part (d) is Parity. 

 
 
2. [6] Griffiths problem 6.9.  To simplify your notation, label the three eigenvectors of 0H as 1 , 

2 , and 3 .  When you get to part (c), write down the 3 x 3 matrix form of H ′ in that basis.  
You can then read all the matrix elements you need directly from the matrix, without performing 
any matrix multiplication.  When you get to part (d), don’t be faked out when you discover that 
H ′ is already diagonal in the 2D subspace of degenerate states. 

 
 Add a part (e) to the problem: Calculate the second-order shifts to states 1  and 2 .  You use the 

same formula [6.15] for second-order P.T., but now the sum is only over the states outside of the 
degenerate subspace, i.e. m=3 only.  (That is because you have already exactly diagonalized 
H ′within the 2D subspace.)  With this last calculation, all three of your energies should agree 
with the expansion of the exact results to order . 2ε
 

 
3. [7] The isotropic 2-dimensional harmonic oscillator is easily solved by writing the Hamiltonian 

as a sum of x and y Hamiltonians:  
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 a) Consider the perturbation .  Calculate the first and second order energy shifts 

of the ground state.  In class we used 
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 To evaluate the matrix elements of H ′ˆ in the yxnn  tensor product states, use: 

   yyxxyxyx nynnxnnnxynn '''' =  
 
 b) Use degenerate P.T. to calculate the first-order energy shifts of the first excited states, as well 

as the “correct” linear combinations of those two states that diagonalize H ′ˆ . 
 
 c) The full Hamiltonian, , is exactly solvable if you make the coordinate 

transformation 
HHH ′+= ˆˆˆ 0 λ

( ) 2/yxu += , ( ) 2/yxv −= .  Express Ĥ in terms of u, v, and their conjugate 
momenta Pu, and Pv.  You should find that the harmonic oscillator in the “u” direction has a 
higher frequency than before, while in the “v” direction the frequency is lower.  Calculate the 
exact energies of the new basis states vu nn , .  For the ground state, expand the energy to second 
order in λ .  For the next two higher states, expand the energies to first order in λ .  Compare 
your results with those you obtained in parts (a) and (b).   

 
 

 
 


