QMII-1. Consider two kets and their corresponding column vectors:
$|\Psi\rangle=\left(\begin{array}{c}1 \\ 1 \\ \sqrt{2}\end{array}\right)$
$|\phi\rangle=\left(\begin{array}{c}1 \\ 1 \\ -\sqrt{2}\end{array}\right)$
Are these two state orthogonal? Is $\langle\psi \mid \phi\rangle=0$?
A) Yes
B) No

Answer: A
Are these states normalized? A) Yes
B) No

Answer: B (each state has a norm of 2)

QMII-2. In spin space, the basis states (eigenstates of $\mathrm{S}^{2}, \mathrm{~S}_{\mathrm{z}}$) are orthogonal: $\langle\uparrow \mid \downarrow\rangle=0$.
Are the following matrix elements zero or non-zero?
$\langle\uparrow| S^{2}|\downarrow\rangle \quad\langle\uparrow| S_{z}|\downarrow\rangle$
$\begin{array}{ll}\text { A) Both are zero } & \text { B) Neither are zero }\end{array}$
C) The first is zero; second is non-zero
D) The first is non-zero; second is zero

Answer: A. Since the kets on the right are eigenstates of both operators, the eigenvalues can be pulled outside, and one is left with $\langle\uparrow \mid \downarrow\rangle=0$.

QMII-3. A spin $1 / 2$ particle in the spin state $|\chi\rangle=\mathrm{a}|\uparrow\rangle+\mathrm{b}|\downarrow\rangle$. A measurement of S_{z} is made. What is the probability that the value of S_{z} will be $+\hbar / 2$?
A) $\left.\left|\langle\uparrow| S_{z}\right| \chi\right\rangle\left.\right|^{2}$
B) $|\langle\uparrow \mid \chi\rangle|^{2}$
C) $\left.\left|\langle\chi| S_{z}\right| \chi\right\rangle\left.\right|^{2}$
D) $\left.\left|\langle\uparrow| S_{z}\right| \uparrow\right\rangle\left.\right|^{2}$
E) None of these

Answer: B. Of course, this is also equal to $|\mathrm{a}|^{2}$.

QMII-4. The raising operator operating on the up and down spin states: $S_{+}|\downarrow\rangle=\hbar|\uparrow\rangle, \quad S_{+}|\uparrow\rangle=0 \quad$ What is the matrix form of the S_{+}?
A) $\hbar\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
B) $\hbar\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
C) $\hbar\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
D) $\hbar\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
E) None of these.

Answer: B.

QMII-5. Is the raising operator S_{+}Hermitian?
A) Yes, always
B) No, never
C) sometimes

Answer: B. The Hermitian conjugate of S_{+}is S_{-}

QMII-6. Consider the matrix equation $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}$.
This is equivalent to
A) $\left(\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right)\binom{a}{b}=0$
B) $\left(\begin{array}{cc}0 & 1-\lambda \\ 1-\lambda & 0\end{array}\right)\binom{a}{b}=0$
C) $\left(\begin{array}{cc}1-\lambda & 0 \\ 0 & 1-\lambda\end{array}\right)\binom{a}{b}=0$
D) $\left(\begin{array}{cc}-\lambda & 1-\lambda \\ 1-\lambda & -\lambda\end{array}\right)\binom{a}{b}=0$
E) None of these

Answer: A. (If you have trouble seeing this, insert the identity matrix between λ and the column vector on the right-hand side of the equation.)

QMII-7. Suppose a spin $1 / 2$ particle is in the spin state $|\chi\rangle=|\uparrow\rangle=\binom{1}{0}$, the $+\hbar / 2$ eigenstate of \hat{S}_{z}. Suppose we measure S_{x} and then immediately measure S_{z}. What is the probability that the second measurement $\left(S_{z}\right)$ will leave the particle in the $S_{z}=$ down state:
$|\chi\rangle=|\downarrow\rangle=\binom{0}{1}$?
A) zero
B) non-zero

Answer: B. S_{x} and S_{z} are incompatible, so the measurement of S_{x} will change the state to something that is not an eigenstate of S_{z}. The new state (which is an eigenstate of S_{x}) will have nonzero components of both $|\uparrow\rangle_{z}$ and $\left\rangle_{2}\right.$.

QMII-8. A quantum system consists of two particles, one of spin $1 / 2$, and the other with spin $3 / 2$. What is the dimension of the spin Hilbert space for this system?
A) $3 / 4$
B) $15 / 4$
C) 2
D) 8
E) I don't know

Answer: D. Each spin Hilbert space has dimension (2s+1). So the tensor product space has dimension $2 \times 4=8$.

QMII-9. Scandium has one electron in the 3d shell. If we measure the zcomponent of that electron's total angular momentum, how many possible values might we get?
A) 2
B) 5
C) 6
D) 10
E) 12

Answer: C. This is a bit tricky. In the d shell, $l=2$, and the electron has $s=1 / 2$. So the total j can be $5 / 2$ or $3 / 2$. Hence m_{j} can be any of the six values with integer spacing between $-5 / 2$ and $5 / 2$.

QMII-10. Consider Scandium again. If we measure S^{2} of the 3d electron, what possible values might we get?
A) $\pm \frac{1}{2} \hbar$
B) $\frac{1}{2} \hbar$ only
C) $\frac{3}{4} \hbar^{2}$ only
D) $\frac{3}{4} \hbar^{2}$ or $\frac{15}{4} \hbar^{2}$
E) None of these

Answer: C. $s=1 / 2$ for an electron.

QMII-11. Consider Scandium again. If we measure J^{2} (J is the total angular momentum) of the 3d electron, what possible values might we get?
A) $\frac{3}{4} \hbar^{2}$
B) $\frac{15}{4} \hbar^{2}$
C) $\frac{35}{4} \hbar^{2}$
D) All of these
E) B and C only

Answer: E. In the answer to problem 9, we said that j can be $5 / 2$ or $3 / 2$.

QMII-12. Consider Scandium again. If we don’t know anything about the outermost electron other than that it is in a 3d orbital, what is the probability that a measurement of J^{2} will produce the result $\frac{15}{4} \hbar^{2}$?
A) $1 / 2$
B) $2 / 5$
C) $3 / 7$
D) $2 / 3$
E) Impossible to compute without table of Clebsch-Gordan coefficients.

Answer: B. There are 4 states with $j=3 / 2$, and 6 states with $j=5 / 2$. If they are all equally probable, then the answer is $4 /(4+6)=2 / 5$.

QMII-13. Which of the following two-electron quantum states satisfies the requirements of the Spin-Statistics Theorem? (For this problem, my notation for the spin states will be $\left|\chi_{s}^{m_{s}}\right\rangle$ rather than $\left|s, m_{s}\right\rangle$.
A) $\left|\Phi_{A}\right\rangle^{(1)}\left|\Phi_{B}\right\rangle^{(2)}\left|\chi_{0}^{0}\right\rangle$
B) $\frac{1}{\sqrt{2}}\left\langle\Phi_{A}\right\rangle^{(1)}\left|\Phi_{B}\right\rangle^{(2)}-\left|\Phi_{B}\right\rangle^{(1)}\left|\Phi_{A}\right\rangle^{(2)}\left|\chi_{0}^{0}\right\rangle$
C) $\frac{1}{\sqrt{2}}\left\langle\Phi_{A}\right\rangle^{(1)}\left|\Phi_{B}\right\rangle^{(2)}+\left|\Phi_{B}\right\rangle^{(1)}\left|\Phi_{A}\right\rangle^{(2)}\left|\chi_{0}^{0}\right\rangle$
D) $\frac{1}{\sqrt{2}}\left\langle\Phi_{A}\right\rangle^{(1)}\left|\Phi_{B}\right\rangle^{(2)}+\left|\Phi_{B}\right\rangle^{(1)}\left|\Phi_{A}\right\rangle^{(2)}\left|\chi_{1}^{0}\right\rangle$
E) Both B and D

Answer: C. Electrons are Fermions, hence the state must be antisymmetric under exchange of the two particles. The $s=0$ spin state is antisymmetric under exchange, while the $s=1$ spin state is symmetric.

QMII-14. Consider two identical spin-1 particles. We want to find eigenstates of the total spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$. Which one of the following statements is correct? (I have omitted all tensor product symbols.)
A) $\left|s=1, m_{s}=1\right\rangle=\frac{1}{\sqrt{2}}\left(|1,1\rangle^{(1)}|1,0\rangle^{(2)}+|1,0\rangle^{(1)}|1,1\rangle^{(2)}\right)$
B) $\left|s=1, m_{s}=1\right\rangle=\frac{1}{\sqrt{2}}\left(|1,1\rangle^{(1)}|1,0\rangle^{(2)}-|1,0\rangle^{(1)}|1,1\rangle^{(2)}\right)$
C) $\left.\left|s=1, m_{s}=1\right\rangle=\frac{1}{\sqrt{2}}(1,1,\rangle^{(1)}|0,0\rangle^{(2)}+|0,0\rangle^{(1)}|1,1\rangle^{(2)}\right)$
D) $\left.\left|s=1, m_{s}=1\right\rangle=\frac{1}{\sqrt{2}}(1,1\rangle^{(1)}|1,-1\rangle^{(2)}-|1,-1\rangle^{(1)}|1,1\rangle^{(2)}\right)$
E) Help, I need my Table of Clebsch-Gordan coefficients!

Answer: B. You can rule out C because one particle there has spin 0 . You can rule out D because it would give $\mathrm{m}_{\mathrm{s}}=0$. The state shown on the right-hand side in A is actually $\left|s=2, m_{s}=1\right\rangle$, which you can show by applying the lowering operator to the state $\left|s=2, m_{s}=2\right\rangle$.

QMII-15. Consider two identical spin-1 bosons. Which of the following two-electron quantum states satisfies the requirements of the SpinStatistics Theorem? (For this problem, my notation for the spin states will be $\left|\chi_{s}^{m_{s}}\right\rangle$ rather than $\left|s, m_{s}\right\rangle$.
A) $\left.\left.\left.\frac{1}{\sqrt{2}}\left|\left(\Phi_{A}\right\rangle^{(1)}\right| \Phi_{B}\right\rangle^{(2)}+\left|\Phi_{B}\right\rangle^{(1)}\left|\Phi_{A}\right\rangle^{(2)}\right) \chi_{2}^{1}\right\rangle$
B) $\frac{1}{\sqrt{2}}\left(\left|\Phi_{A}\right\rangle^{(1)}\left|\Phi_{B}\right\rangle^{(2)}-\left|\Phi_{B}\right\rangle^{(1)}\left|\Phi_{A}\right\rangle^{(2)}\left|\chi_{2}^{1}\right\rangle\right.$
C) $\frac{1}{\sqrt{2}}\left\langle\Phi_{A}\right\rangle^{(1)}\left|\Phi_{B}\right\rangle^{(2)}+\left|\Phi_{B}\right\rangle^{(1)}\left|\Phi_{A}\right\rangle^{(2)}\left|\chi_{1}^{0}\right\rangle$
D) $\frac{1}{\sqrt{2}}\left\langle\Phi_{A}\right\rangle^{(1)}\left|\Phi_{B}\right\rangle^{(2)}-\left|\Phi_{B}\right\rangle^{(1)}\left|\Phi_{A}\right\rangle^{(2)}\left|\chi_{1}^{0}\right\rangle$
E) Both A and D

Answer: E. Since the particles are bosons, the state must be symmetric under exchange of the two particles. The states in the highest ladder ($s=2$ for this problem) are always symmetric under exchange. From the previous problem, you know that the states in the $s=1$ ladder are antisymmetric under exchange. All the states in a given spin ladder have the same symmetry under exchange.

