
Physics 472:  Summary of Angular Momentum and Spin 
 

Angular Momentum 
 
The two types of angular momentum, orbital angular momentum L

r
 and intrinsic spin S

r
, 

behave nearly the same way.  We’ll refer to all types of angular momentum as J
r

.  All 
properties can be derived from the canonical commutation relations: 
 
 [ ] zyx JiJJ h=,  and cyclic permutations. 
 
Since [ ] 0,2 =JJ

r
, we can find simultaneous eigenstates of  and any component of 2J J

r
.  

It is customary to choose the z-component.  Then we label our eigenstates by the 
quantum numbers j and m, where 
 
 ( ) mjjjmjJ ,1, 22 += h  

 mjmmjJ z ,, h=  
 
where j = 0, ½, 1, 3/2, 2 ... and m =  -j, -j+1, -j+2, ..., j-1, j 
 
The only difference between L

r
 and S

r
 is that l takes on only integer values. 

 
The raising and lowering operators for angular momentum are defined as: 
  
   yx iJJJ +=+ yx iJJJ −=−  
 
When they act on a state mj,  , they increase or decrease by 1 the value of m without 
changing the value of  j: 
 
 ( ) ( ) 1,11, ++−+=+ mjmmjjmjJ h   

 ( ) ( ) 1,11, −−−+=− mjmmjjmjJ h  
 
Addition of Angular Momentum 
 
If 21 JJJ

rrr
+= , then the eigenstates of and  can be expressed as linear combinations 

of the tensor product eigenstates of ,  and , , using the Clebsch-Gordan 
coefficients. 
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 where ( ) ( ) ( ) 21212121 ...,,2,1, jjjjjjjjj −−+−++= .  You can derive the 
coefficients by starting at the top state of the top j ladder and applying the lowering 
operator, but you should know how to read the table of Clebsch-Gordan coefficients. 



Spin and Dirac Notation 
 
Because Griffiths uses the spinor notation rather than Dirac notation, this section is 
intended to clarify the relationship between the two. 
 
If we have a particle with spin s, then the dimension of the Hilbert space associated with 
the spin degree of freedom is (2s+1).  We can work in any orthonormal basis, but we 
usually choose as our basis states the eigenstates of  and , labeled 2S zS sms, .  The 
eigenvalue equations are: 
 ( ) ss msssmsS ,1, 22 += h  

 sssz msmmsS ,, h=  
If we are dealing with a single particle, then we sometimes omit the “s” in the label, and 
simply write sm .  If s=1/2, we usually substitute ↑  and ↓  for 2

1  and 2
1− . 

 
A general spin state χ  can be written as a linear superposition of the basis states: 

 ∑
−=

=
s

sm
m mcχ   where χmcm = . 

So we have 

 χχ mm
s

sm
∑
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=  

If we remove the ket χ  from both sides, this is just the completeness relation. 
 
Because the Hilbert space is finite, it is sometimes convenient to represent states by 
column vectors, and operators by matrices.  For s=1/2, 1, and 3/2, we get: 
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For s=1/2, Griffiths uses the spinor notation: 

 , where  and  −+ +=⎟⎟
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You can derive the matrix forms of the spin operators from your knowledge of how the 
raising and lowering operators act on the spin eigenstates.  For spin-1/2, it is customary to 
express the spin operator matrices in terms of the Pauli spin matrices: 
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