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Chapter 13

Introductory Many-Body Physics

Muchos pocos hacen un mucho.
(Many a pickle makes a mickle [30])

— Miguel de Cervantes, Don Quixote.

13.1 Introduction

In the last chapter, the quantum nature of a system of identical particles was introduced. A

number of importance consequences, such as the construction of the periodic table of ele-

ments and the shell theory of nuclei, were deduced based on the independent-particle model,

in which the interaction between particles was represented by part of the one-particle po-

tential without specifying how it was to be approximated. In this chapter, we introduce the

construction of one-particle potentials whose purpose is to take into account the many-body

effects on the single-particle dynamics, in particular, the Hartree and Fock approximations

and the density functional theory. The last is the framework for the Thomas-Fermi approxi-

mation and its systematic density-gradient corrections. It is also the basis for the local-density

approximation, which has been widely used, especially by solid state physicists and quantum

chemists. By a slight extension of the Hartree-Fock methodology, we study the theory of

fermion pairing in the Bardeen-Cooper-Schrieffer (BCS) state, which has applications in su-

perconductors, the physics of the nucleus, and particle theory.

The method of second quantization will be first introduced as a concise way to deal with

many-body systems and as a convenient conceptual tool to understand the physics. Thus, I

hope that this chapter would also serve as a preliminary step to further study in quantum field

617



618 CHAPTER 13. INTRODUCTORY MANY-BODY PHYSICS

theory and in many-body physics.

13.2 Second Quantization

In principle, we can gain complete knowledge of a many-particle systems by writing down

the Hamiltonian for this system and solve the Schrödinger equation associated with it. How-

ever, the Hamiltonian typically contains, besides the sums of single-particle kinetic energy

and static potential, the interaction between pairs of particles. This makes the partial differ-

ential equation of many-particle coordinates not separable. The resource required for direct

numerical solution beyond a few particles is prohibitive.

One might imagine that one could start with a complete set of one-particle states and

construct all the symmetrized (for bosons) and antisymmetrized (for fermions) states as the

basis set for the N -particle state. The problem is then reduced to diagonalizing a matrix of

the Hamiltonian. Of course, the size of the matrix grows exponentially with N . Nonetheless

the idea of independent-particle basis states is a useful one as a starting point for building

approximations. One needs a better tool than working directly with the sum of symmetrized

products (permanents) or Slater determinants introduced in the last chapter. Second quan-

tization is the tool which facilitates the construction of a complete set of basis sets for any

number of particles. The idea is to use an operator to connect one state of a definite number

of particles to a state with one more or less particle. The operator also contains the dynamical

information of the particle added or removed. The most general state can then be expressed

as a linear combination of these basis states.

13.2.1 The creation operator

In the beginning, there is void. We describe the state with no particles as the vacuum, denoted

by |0〉, the first state vector in the Hilbert space. Then, we put one particle at the position r,

given by the state vector

|r〉 = ψ†(r)|0〉, (13.2.1)
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where we have introduced the creation operator ψ†(r) describing the act of creating a particle

at r out of the void. For definiteness, we will focus our attention on r as the position coor-

dinates of a particle. If we wish to include additional independent degrees of freedom for a

particle such as spin, we could include in r the eigenvalues of S2 and S · n̂, etc. Since identi-

cal particles have the same fixed spin s, we need only include the azimuthal quantum number

ms along a specified direction z. In principle, the spins of the particles can have different

orientations n̂ but an equivalent description is to use the same basis set of eigenstates along a

common fixed z direction and to specify the spin components for various ms. Similarly, we

could add an isospin quantum number of T3 for a nucleon. In general, r represents a set of

quantum numbers which yield a complete set of one-particle states, such as n�mms for an

electron in an atom.

One function of the creation operator ψ†(r) is to transform the vacuum state to the one-

particle state |r〉. The idea of the creation operator is not totally new to us. We have encoun-

tered a couple of examples before. The creation operation in the harmonic oscillator problem

which gives c†|n〉 =
√

n + 1|n + 1〉 connects a state with n quanta of energy h̄ω (plus the

zero point energy h̄ω/2) to the state with n + 1 quanta of energy. The raising operator L+

connects the angular momentum state |� m〉 to |� m + 1〉. The only difference is that the one-

particle state has to be characterized, in addition, by the quantum numbers for a complete set

of one-particle basis states, such as r.

Now, for a state with the first particle at r1 and the second particle at r2, we could use the

description

|r2, r1〉 = |r2〉2|r1〉1, (13.2.2)

where the right-hand side describes the Hilbert space made up of a product of two single-

particle particle Hilbert spaces, with the particle at r1 in one and the particle at r2 in the

second. (Notice that we arrange the order of the Hilbert spaces of the individual particles

from right to left, opposite to the convention commonly used, cf. Sec. 11.3). Its relation to

the vacuum is

|r2, r1〉 = ψ†(r2)φ
†(r1)|0〉. (13.2.3)
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This recipe is OK if the two particles are distinct, such as a proton and an electron, represented

by two different creation operators which commute with each other. If the two particles are

identical, we need (1) the two operators to be identical except for the dependence on the

quantum number, r1 or r2 and (2) their algebra reflects the permutation symmetry of the

boson or fermion character.

For bosons, the two-particle state has to be symmetrized:

S|r2, r1〉 =
1√
2
[|r2〉2|r1〉1 + |r1〉2|r2〉1]. (13.2.4)

The normalization factor of 1/
√

2 is determined by the requirement

〈r′1, r′2|S†S|r2, r1〉 = δ(r′2 − r2)δ(r
′
1 − r1) + δ(r′2 − r1)δ(r

′
1 − r2), (13.2.5)

where the Hermitian conjugate of the state vector of |r2, r1〉 has the particle positions in re-

versed order. The state is normalized in the continuous eigenvalue case if one pair of quantum

number equal to the other or its exchange. The second act of creation is given by:

S|r2, r1〉 = ψ†(r2)|r1〉 = ψ†(r2)ψ
†(r1)|0〉. (13.2.6)

The symmetry of the state under particle exchange demands the commutation relation,

ψ†(r2)ψ
†(r1) = ψ†(r1)ψ

†(r2), (13.2.7)

or

[ψ†(r1), ψ
†(r2)] ≡ ψ†(r1)ψ

†(r2) − ψ†(r2)ψ
†(r1) = 0. (13.2.8)

If the particles are fermions, the two-particle state has to be antisymmetrized:

A|r2, r1〉 =
1√
2

[|r2〉2|r1〉1 − |r1〉2|r2〉1] . (13.2.9)

In second quantized form, the state is given by

A|r2, r1〉 = ψ†(r2)ψ
†(r1)|0〉. (13.2.10)

The antisymmetry of the state under particle exchange demands the anticommutation relation,

ψ†(r2)ψ
†(r1) = −ψ†(r1)ψ

†(r2), (13.2.11)
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or

{ψ†(r1), ψ
†(r2)} ≡ ψ†(r1)ψ

†(r2) + ψ†(r2)ψ
†(r1) = 0. (13.2.12)

By induction, the same creation operator can be used to build an N-particle basis state,

XN |rN , . . . , r2, r1〉 =
1√
N !

∑

P

eP P |rN〉N . . . |r2〉2|r1〉1, (13.2.13)

where P is the permutation operator acting on permuting the one-particle states among the

individual Hilbert spaces. For the bosons, XN is the symmetrization operator SN with eP = 1.

For the fermions, XN is the antisymmetrization operator AN with eP = ±1 depending on the

parity of the permutation (i.e. on whether the number of exchanges is even or odd). To add a

particle to an N-particle state, the rule is

ψ†(rN+1)XN |rN , . . . , r2, r1〉 = XN+1|rN+1, rN , . . . , r2, r1〉 (13.2.14)

For each N-particle space, we have a complete set of position eigenstates

XN |rN , . . . , r2, r1〉 = ψ†(rN)ψ†(rN−1) . . . ψ†(r1)|0〉, (13.2.15)

whose boson or fermion property simply depends on the commutation rule. In the repre-

sentation of the symmetrized state in the second quantized form, the order of labeling the

individual particle Hilbert spaces is no longer important.

13.2.2 The annihilation operator

In this subsection, we show that ψ(r), the Hermitian conjugate of the creation operator ψ†(r),

removes a particle at r if there is one there and destroys the whole state if there is no particle

at r.

The Hermitian conjugate of the state ψ†(r)|0〉 is 〈0|ψ(r). The overlap of two states is

given by

〈r′|r〉 = 〈0|ψ(r′)ψ†(r)|0〉. (13.2.16)

We may read the above equation as showing that the action of ψ(r′) following the creation of

a particle is to reduce the one-particle state to a zero-particle state. Because of the orthonor-

mality of the position eigenstates, given by

〈r′|r〉 = δ(r − r′), (13.2.17)
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the annihilation operator ψ(r′) reduce the one-particle state to vacuum if it hits exactly where

the existing particle is but destroys the vacuum state on the right if it does not hit the particle.

Thus, two important properties of the annihilation operator ensue. One is the reduction of the

vacuum state to nothingness,

ψ(r)|0〉 = 0. (13.2.18)

The use of the words, “void” and “nothingness” seems Zen-like but the distinction is perfectly

precise. The void or the vacuum state is a state of the Hilbert space with no particles (or at

least no particles of the kind under consideration) whereas nothingness means no state in the

Hilbert space at all. The second property is the commutation relations, which for the bosons

and fermions are, respectively,

[ψ(r), ψ†(r′)] = δ(r − r′), (13.2.19)

{ψ(r), ψ†(r′)} = δ(r − r′). (13.2.20)

Note that if r contains a component of discrete quantum numbers, such as the spin, r =

(r.ms), then

δ(r − r′) = δ(r − r′)δms,m′
s
. (13.2.21)

The commutation relations between ψ†(r) and ψ†(r′) lead to their Hermitian conjugate rela-

tions, for bosons and fermions respectively,

[ψ(r), ψ(r′)] = 0, (13.2.22)

{ψ(r), ψ†(r′)} = 0. (13.2.23)

In general, the destruction effect is

ψ(r)XN |rN , . . . , r1〉 =
N∑

�=1

e�δ(r − r�)XN−1|rN , . . . , (r� removed), . . . , r1〉, (13.2.24)

where e� is unity for the bosons and is the parity symbol for the fermions. The parity e� = ±1

depends on the even or odd number of exchanges necessary for the annihilation operator ψ(r)
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to get to ψ†(r�), It follows that

〈0|ψ(r′1) . . . , ψ(r′N)ψ†(rN) . . . ψ†(r1)|0〉 =
∑

P

eP P{rj}
N∏

j=1

〈0|ψ(r′j)ψ
†(rj)|0〉

=
∑

P

eP P{rj}
N∏

j=1

δ(r′j − rj), (13.2.25)

where P{rj} denotes a permutation of the variables r1, r2, . . . , rN . This useful result of

breaking an expectation value of an “anti-normal” product of annihilation and creation opera-

tors (i.e., annihilation operators to the left of the creation operators) into a sum of permutation

of expectation values of pairs of an annihilation and a creation operator, 〈r′j′|rj〉, is a special

case of the Wick’s theorem. It can be proved either from the definition of the symmetrized (or

antisymmetrized) state, 〈r′1, . . . , r′N |X†
NXN |rN , . . . , r1〉, or directly from the commutation of

the operators, such as Eq. (13.2.24).

Working in terms of the representation of a complete basis set, we often make use of the

completeness relation. Here it is, in terms of the unsymmetrized states,
∫

drN . . .

∫
dr1|rN . . . r1〉〈r1 . . . rN | = 1. (13.2.26)

Since this operators between two states which are always either symmetric or antisymmetric,

we can replace the left-hand side by the symmetrized version,
∫

drN . . .

∫
dr1XN |rN . . . r1〉

1

N !
〈r1 . . . rN |XN = 1, (13.2.27)

or, in the second quantized form,
∫

drN . . .

∫
dr1ψ

†(rN)ψ†(rN−1) . . . ψ†(r1)|0〉
1

N !
〈0|ψ(r1) . . . ψ(rN) = 1, (13.2.28)

When each state in the completeness relation is replaced by a sum of N ! permuted terms, the

whole integral needs to be divided by N ! × N ! terms. The absorption of
√

N ! in each XN

leaves only N ! in the denominator.

13.2.3 Second quantization of the physical observable

If the mapping of the momentum p to the operator −ih̄∇ is regarded as the first quantiza-

tion, then the change of the wave function to the operator ψ(r) may be considered as the
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second quantization. The wave function of an N-particle state represented by a symmetric or

antisymmetric state vector |Ψ〉 is given by

〈rN , rN−1, . . . , r1|Ψ〉 =
1√
N !

〈rN , rN−1, . . . , r1|XN |Ψ〉

=
1√
N !

〈0|ψ(rN) . . . ψ(r1)|Ψ〉. (13.2.29)

Note that the bra state on the left is not symmetrized. One advantage which we shall demon-

strate presently is the convenience of second quantization for dealing with many-particle

states. An important concept is that we have transformed the treatment of the many-particle

system into a treatment of the particle field ψ(r). We shall later see that the quantization of

the electromagnetic field is closely related to the particle field.

We need a way to represent the physical observable in the first quantization in terms of

the creation and annihilation operators.

The density and number operators

First consider the Hermitian operator

n̂(r) = ψ†(r)ψ(r). (13.2.30)

Since

n̂(r)ψ†(r1) . . . ψ†(rN)|0〉 =
N∑

j=1

δ(r − rj)ψ
†(r1) . . . ψ†(rN)|0〉, (13.2.31)

using the commutation or anticommutation relations and since the sum of the δ-functions

gives the density of particles in the system, we can interpret the operator n̂(r) as the number

density operator. Similarly,

N̂ =

∫
dr n̂(r) =

∫
dr ψ†(r)ψ(r), (13.2.32)

is the total number operator, since

N̂ψ†(r1) . . . ψ†(rN)|0〉 = Nψ†(r1) . . . ψ†(rN)|0〉. (13.2.33)
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One-particle properties

A one-particle observable is a function of position, momentum, spin, etc., of a particle,

f(r, p), where p includes the dynamic operators in the |r〉 representation not in the set of

operators producing the eigenvalues r, such as the momentum operator and spin components

Sx and Sy. For the N-particle system, the sum of the identical property over all particles is

given by the observable

F (r1, p1, . . . , rN , pN) =
N∑

j=1

f(rj, pj). (13.2.34)

Its matrix element between any two N -particle states is given by

〈Φ|F |Ψ〉 =

∫
dr1 . . .

∫
drN〈Φ|r1 . . . rN〉

N∑

j=1

f(rj, pj)〈rN . . . r1|Ψ〉 (13.2.35)

= N

∫
dr1 . . .

∫
drN〈Φ|r1 . . . rN〉f(r1, p1)〈rN . . . r1|Ψ〉

=
1

(N − 1)!

∫
dr1 . . .

∫
drN〈Φ|ψ†(r1) . . . ψ†(rN)|0〉f(r1, p1)〈0|ψ(rN) . . . ψ(r1)|Ψ〉.

The first-quantized operator f(r1, p1) may be moved to the place just the left of ψ(r1) since

p1 commutes with all rj except r1. The middle two vacuum states may be replaced by a

complete set of states of any number of particles without changing the equation since the

additional states are orthogonal to the state to the right of 〈0| or to the left of |0〉 which has

no particles. Thus,

〈Φ|F |Ψ〉

=
1

(N − 1)!

∫
dr1 . . .

∫
drN〈Φ|ψ†(r1) . . . ψ†(rN)ψ(rN) . . . ψ(r2)f(r1, p1)ψ(r1)|Ψ〉

= 〈Φ|
∫

dr1ψ
†(r1)f(r1, p1)ψ(r1)|Ψ〉. (13.2.36)

Since by Eq. (13.2.33)
∫

drNψ†(rN)ψ(rN) = N̂ , operating on the state to the left containing

net one-particle, yields a factor of unity, the next integral operates on a two-particle state and

so on, successive integration over rN , rN−1, . . . , r2 gives a factor of 1, 2, . . . , N − 1 which
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cancels the factorial in the denominator. Hence, the second quantized form of the observable

F is

F̂ =

∫
dr ψ†(r)f(r, p)ψ(r). (13.2.37)

Two important applications of the formula are for the total kinetic energy and potential

energy of the system,

T̂ =

∫
dr ψ†(r)

(
− h̄2

2m
∇2

)
ψ(r)

V̂ =

∫
dr ψ†(r)v(r)ψ(r). (13.2.38)

Two-particle property

We can similarly derive from

〈Φ|U |Ψ〉 =

∫
dr1 . . .

∫
drN〈Φ|r1, . . . , rN〉

1

2

∑

j �=k

u(rj, pj; rk, pk) 〈rN , . . . , r1|Ψ〉, (13.2.39)

the second quantized form

Û =
1

2

∫
dr

∫
dr′ψ†(r)ψ†(r′)u(r, r′)ψ(r′)ψ(r) (13.2.40)

This is particularly important for the Coulomb interaction between two electrons where

u(r − r′) =
e2

4πε0|r − r′| . (13.2.41)

13.2.4 Transformation of the second quantization

We study the transformation from the creation operator ψ†(r) and annihilation operator ψ(r)

in terms of r to another set of quantum numbers. Suppose that a new complete orthonormal

set of one-particle states |uk〉, k = 0, 1, . . ., is used instead of |r〉. We choose here to assume

the quantum numbers k to be discrete. We can make a series expansion of the annihilation

operator as

ψ(r) =
∑

k

uk(r)ck, (13.2.42)
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where uk(r) = 〈r|uk〉 and

ck =

∫
dru∗

k(r)ψ(r), (13.2.43)

which may easily be interpreted as an operator which annihilates a particle in state |uk〉, just

as c†k creates a particle in the state

|uk〉 = c†k|0〉 (13.2.44)

since

〈r|c†k|0〉 = 〈0|ψ(r)

∫
dr′uk(r)ψ

†(r)|0〉 = 〈0|
∫

dr′δ(r − r′)uk(r)|0〉 = uk(r).(13.2.45)

For the boson operators, the commutation relations are

[ck, ck′ ] ≡ ckck′ − ck′ck = 0; (13.2.46)

[
ck, c

†
k′

]
≡ ckc

†
k′ − c†k′ck = δk,k′ . (13.2.47)

A normalized and symmetrized state made up of N noninteracting bosons is given by

|jN , . . . , j1〉S = C({j})SN [|jN〉N , . . . , |j1〉1]

= C({j}) 1√
N !

∑

P

P [|jN〉N , . . . , |j1〉1], (13.2.48)

where C({j}) is the normalization constant

C({j}) =
1√∏
k nk!

, (13.2.49)

to be derived now. Since for bosons, some of the quantum numbers j1, . . . , jN can be the

same, let nk be the number of particles in state k. The number of distinct states after permu-

tation is N !/
∏

k nk!. The normalization constant using the sum of distinct states would be
√∏

k nk!/N !. In using the sum over all permutations we have overcounted the states which

should then be divided by
∏

k nk!. Thus,

C({j}) 1√
N !

=

√∏
k nk!

N !

1∏
k nk!

. (13.2.50)
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The argument for the normalization constant is illustrated by the consideration of two-boson

states in Problem 1. By the definition of the second quantized form in Eq. (13.2.15),

c†Nc†N−1 . . . c†1|0〉 = SN [|jN〉N , . . . , |j1〉1]. (13.2.51)

The normalized N -boson state is, therefore,

|jN , . . . , j1〉S =
1√∏
k nk!

c†jN
. . . c†j1 |0〉, (13.2.52)

=
∏

k

[
1√
nk!

(c†k)
nk

]
|0〉. (13.2.53)

For the fermion operators, the commutation relations are

{ck, ck′} ≡ ckck′ + ck′ck = 0; (13.2.54)

{ck, c
†
k′} ≡ ckc

†
k′ + c†k′ck = δk,k′ . (13.2.55)

The normalization of the N -fermion state is much simpler since the occupied states j1, . . . , jN

have to be different from one another:

|jN , . . . , j1〉A = AN [|jN〉N , . . . , |j1〉1]

=
1√
N !

∑

P

eP P [|jN〉N , . . . , |j1〉1]

= c†Nc†N−1 . . . c†1|0〉. (13.2.56)

It is, of course, possible to introduce the creation and annihilation operators in terms of

the single-particle states and derive the field operator ψ(r) as an expansion in terms of them.

13.3 The Non-interacting Homogeneous Bose Gas

As an example of the use of the second quantization, we study a few key properties of the

ideal Bose gas, i.e., a system of N spinless Bose particles which do not interact with each

other nor experience an external potential. The Fermi gas is given in Problem 11.
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13.3.1 Energy eigenstates

The Hamiltonian is given by

H =
∑

j

p2
j

2m
. (13.3.1)

In second quantized form, it becomes

H =

∫
d3rψ†(r)

(
− h̄2

2m
∇2

)
ψ(r). (13.3.2)

Since the system is homogeneous, the eigenstate of each particle is a plane-wave state and in

that basis, the annihilation operator is written as

ψ(r) = V −1/2
∑

k

ei�k·�rck, (13.3.3)

where we have put the bosons in a large box of volume V with periodic boundary conditions.

The Hamiltonian becomes

H =
∑

k

εkc
†
kck, where εk =

h̄2k2

2m
. (13.3.4)

An energy eigenstate is of the form

|Ψ〉 ≡ |{nk}〉 =
∏

k

1√
nk!

(c†k)
nk|0〉, (13.3.5)

where {nk} denotes a set of occupation functions of single-particle states k. This many-boson

state |Ψ〉 is also an eigenstate of the number operator c†kck for state k with the eigenvalue nk.

13.3.2 The pair distribution function

The pair distribution function, g(r, r′), is the probability of finding a particle at the position

r relative to the position of a particle already known to be at a position r′. By the classical

analogy, it may be written as the density-density correlation function,

g(r, r′) =
1

n2
〈n̂(r)n̂(r′)〉

=
1

n2
[〈Ψ|ψ†(r)ψ(r)ψ†(r′)ψ(r′)|Ψ〉], (13.3.6)
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where n = N/V is the average density and the angular brackets denotes the expectation value

with respect to a state. For convenience of evaluation, the expression is rearranged into the

normal order, i.e., the creations operators to the left and the annihilation operators to the right,

g(r, r′) =
1

n2
[〈ψ†(r)ψ(r)〉δ(r − r′) + 〈ψ†(r)ψ†(r′)ψ(r′)ψ(r)〉]. (13.3.7)

This result is valid for both fermions and bosons. Removing the spiky term, we obtain the

pair distribution function for the quantum particles,

G(r, r′) = g(r, r′) − 1

n2
〈ψ†(r)ψ(r)〉δ(r − r′)

=
1

n2
〈ψ†(r)ψ†(r′)ψ(r′)ψ(r)〉. (13.3.8)

The given boson system is translationally invariant. The distribution function can be simpli-

fied to depending only on the relative distance between the pair of particles,

G(r − r′) =
1

n2
〈ψ†(r − r′)ψ†(0)ψ(0)ψ(r − r′)〉. (13.3.9)

Wick’s theorem states that the non-interacting N -particle state expectation value of a

“normal” product of equal numbers of creation and annihilation operators can be broken

into a sum of products of expectation values of all possible pairs of one creation and one

annihilation operator. Thus, the pair distribution function becomes

G(r) =
1

n2
[〈ψ†(r)ψ(r)〉ψ†(0)ψ(0)〉 + 〈ψ†(r)ψ(0)〉〈ψ†(0)ψ(r)〉]. (13.3.10)

(For fermions, the second term would be negative because an odd number of pair exchanges

were made.)

Since the translation invariance of the system ensures that 〈ψ†(r)ψ(r)〉 = n is indepen-

dent of the position, the pair distribution function is

G(r) = 1 +

∣∣∣∣
n1(0, r)

n

∣∣∣∣
2

, (13.3.11)

where n1(0, r) = 〈ψ†(0)ψ(r)〉 is known as the one-particle reduced density matrix. By means

of the plane-wave expansion (13.3.3), it is

〈Ψ|ψ†(0)ψ(r)|Ψ〉 = V −1
∑

k

nke
i�k·�r, (13.3.12)
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which can be evaluated explicitly, for example, for a Boltzmann distribution (as a high tem-

perature approximation for the bose thermal distribution),

nk = e−(εk−µ)/kBT , (13.3.13)

as

G(r) = 1 + e−r2/λ2
T , (13.3.14)

where λT is the thermal wavelength, h̄/
√

mkBT . Note that at r = 0 the pair function is 2

and it decays off to unity. The enhancement of the probability of finding one boson on top

of another (even without interaction) is the constructive interference effect of the two boson

wave functions. This bunching effect is found in a beam of photons in thermal equilibrium by

the intensity interferometry of Hanbury Brown and Twiss, which will be studied in the next

chapter on the quantization of the electromagnetic field.

13.3.3 Verification of the special case of Wick’s theorem

In the plane-wave expansion, the pair distribution function becomes,

n2G(r) = V −2
∑

klmn

e−i�k·�r+i�n·�r〈Ψ|c†kc
†
l cmcn|Ψ〉. (13.3.15)

For nonzero expectation values, the states k and l must pair up with the states m and n.

Because of the boson nature, the values are different depending on whether k and l are the

same or not. Thus,

〈Ψ|c†kc
†
l cmcn|Ψ〉 = (1 − δk,l)(δk,nδl,m + δk,mδl,n)nknl + δk,lδk,mδk,nnk(nk − 1). (13.3.16)

When the expectation value is put back in the sum, the factor δk,l restricting the terms on the

right makes the contribution from such terms smaller than those terms without such restriction

by a factor of 1/N . Thus, in the large N or V limit keeping the density constant,

〈Ψ|c†kc
†
l cmcn|Ψ〉 = (δk,nδl,m + δk,mδl,n)nknl. (13.3.17)

This is an example of Wick’s theorem of two possible pairings,

〈c†kc
†
l cmcn〉 = 〈c†kcn〉〈c

†
l cm〉 + 〈c†kcm〉〈c†l cn〉. (13.3.18)
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13.4 Hartree and Fock Approximations in a Fermion Sys-
tem

In the rest of this chapter, we shall concentrate on the many-fermion system. The simplest

approximation to find the ground-state energy is by utilizing the variational principle starting

with the wave function of a system of noninteracting fermions, i.e., N particles occupying the

single-particle states {φj(r)}, where j = 1, . . . , N . The “best” single-particle wave functions

are defined as those minimizing the total energy of the whole system.

By the method in the last chapter, we would write down the Hamiltonian of the system of

fermions,

H =
∑

j

[
p2

j

2m
+ v(rj)

]
+

1

2

∑

j �=k

u(rj − rk), (13.4.1)

where v is the one-particle potential and u is the interaction between two particles. To find the

ground state energy, we minimize the energy expectation 〈Ψ|H|Ψ〉, where |Ψ〉 is a Slater de-

terminant of N single particle orbitals φj(r). The resultant variational equations then govern

the orbitals.

As an alternative way to proceed, we shall evaluate the energy by the second-quantization

method. We let the annihilation operator be given by the infinite series,

ψ(r) =
∞∑

j=1

φj(r)cj. (13.4.2)

The spin degrees of freedom are understood to be included in the coordinates r = (r, ms) and

the quantum numbers j = (k, σ). The single-particle functions φj(r) are to be determined

below.

The Hamiltonian for the whole system in second quantized form is

H =

∫
drψ†(r)

(
− h̄2

2m
∇2

)
ψ(r) +

∫
drψ†(r)v(r)ψ(r)

+
1

2

∫
dr

∫
dr′ψ†(r)ψ†(r′)u(r − r′)ψ(r′)ψ(r). (13.4.3)

The first term on the right is the kinetic energy. The second is the total potential energy due

to the external potential v(r) acting on each particle. For example, in an atom, molecule,
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or solid, v(r) is the Coulomb potential due to the positively charged nuclei, which are taken

to remain fixed in position. The third term is the interaction between pairs of particles, for

example, the Coulomb repulsion between electrons,

u(r − r′) =
e2

4πε0|r − r′| . (13.4.4)

In terms of the annihilators cj , the Hamiltonian is

H =
∑

j,k

hjkc
†
jck +

1

2

∑

ijk�

uijk�c
†
ic

†
jckc�, (13.4.5)

where the single-particle part of the energy is given by the matrix element

hjk =

∫
drφ∗

j(r)

[
− h̄2

2m
∇2 + v(r)

]
φk(r), (13.4.6)

and the interaction part is given by the Coulomb matrix element,

uijk� =

∫
dr

∫
dr′φ∗

i (r)φ
∗
j(r

′)u(r − r′)φk(r
′)φ�(r). (13.4.7)

The variational ground-state vector is

|Ψ〉 =
N∏

j=1

c†j|0〉, (13.4.8)

and its wave function is the N × N Slater determinant,

〈r1, . . . , rN |Ψ0〉 =
1√
N !

det[φj(rj′)]. (13.4.9)

The energy expectation is

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 . (13.4.10)

The Hamiltonian matrix element is easily evaluated if one has a couple of relations. One is

〈Ψ|c†jck|Ψ〉 = njδjk, (13.4.11)

where nj = 1 if state j is occupied by a particle and = 0 if it is unoccupied. Note that if k is

not one of the states in |Ψ〉, the state will be annihilated. The reason j = k follows from the

orthogonality of two N-particle states with different orbitals. The other is

〈Ψ|c†ic†jckc�|Ψ〉 = ninj(δi�δjk − δikδj�), (13.4.12)
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which can be evaluated by the same pairing reasoning of each annihilation operator with a

creation operation as in the bose case above. Note the minus sign which comes with the

permutation required before the pairing. Hence, the variational energy is

E =
∑

j

hjj +
1

2

∑

ij

ninj(uijji − uijij), (13.4.13)

as we have taken the single-particle orbitals to be orthonormal. Since the matrix elements of

h and u involve the functions φj(r) and φ∗
j(r), we may vary them independently to find the

smallest E. Since

〈Ψ|Ψ〉 =
N∏

j=1

∫
dr φ∗

j(r)φ(r), (13.4.14)

we use the Lagrange multipliers εj to keep the single-particle wave functions normalized and

minimize

〈Ψ|H|Ψ〉 −
N∑

j=1

εj

∫
dr φ∗

j(r)φ(r), (13.4.15)

subject to the condition that

∫
dr φ∗

j(r)φ(r) = 1, for all j. (13.4.16)

The variational equations can be obtained by differentiating Eq. (13.4.13) with respect to

φ∗(r),

− h̄2

2m
∇2φj(r) +

∫
dr′ veff(r, r

′)φj(r
′) = εjφj(r), (13.4.17)

where

veff(r, r
′) = v(r)δ(r − r′) + vH(r)δ(r − r′) + vx(r, r

′), (13.4.18)

vH(r) =
∑

i

ni

∫
dr′ u(r − r′)|φi(r

′)|2, (13.4.19)

vx(r, r
′) = −

∑

i

niφi(r)u(r − r′)φ∗
i (r

′). (13.4.20)

The result can be simply interpreted as that the Hartree-Fock approximation to the ground

state is made up of N fermions in the orbitals {φj(r)}, which are governed by the one-particle
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Schrödinger equation with an effective non-local potential veff. The effective potential is

composed of three terms. The first is, of course, the original external potential v(r). The

second vH(r) is the potential due to interaction of the particle in orbital j with the density

distribution of all the particles. For electrons, this is the electrostatic potential due to the

particle density n(r),

vH(r) =

∫
dr′ u(r − r′)n(r′), (13.4.21)

n(r′) =
∑

i

ni|φi(r
′)|2. (13.4.22)

It might seem that the electrostatic interaction of an orbital j with itself is unphysical and

should be excluded from the sum above. Indeed, the original Hartree approximation, which

is a variational result using the trial wave function of a product of N orbitals (without anti-

symmetrization), leads to the Hartree potential vH(r) with the sum excluding the i = j term.

However, for the convenience which an orbital-independent potential brings, we have kept

the self-interaction term in the Hartree potential. The defect is ameliorated in two different

ways: (1) the second sum also contains an i = j term which cancels out the first term and (2)

in very large systems, the error is of the order 1/N .

The third term in the effective potential, vx(r, r
′), is the only nonlocal term. It is known as

the Fock term or the exchange potential. Notice that from Eq. (13.4.13) the Hartree term uijji

originates in the Coulomb matrix element uijk� which causes the scattering of one particle

from state � to state i (see Eq. (13.4.12)) via interaction with a second particle from state k to

state j. The term “exchange” comes from the exchange of the roles of states k and � in the

two-particle scattering. This point is illustrated in Fig. 13.1.

If we consider the fermions to be spin 1/2-particles, the states i and j contain spin up and

down states. Further, let us consider the interaction potential to be independent of spins, as is

the case for the Coulomb interaction, i.e. in uijk�, states i and � have the same spin states and

so do j and k. The sum over i in the density n(r) includes sum over spin up and down states

and the Hartree potential for the electron in state j depends equally on the density distribution

of both types of spin states. On the other hand, while the so-called reduced or one-particle

density matrix n(r, r′) =
∑

i niφi(r)φ
∗
i (r

′) does sum over both spin states, the exchange
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Figure 13.1: Direct and exchange interaction between two particles. The solid lines with
arrows represent the propagation of the two particles and the dashed line the interaction. The
diagram on the left represents the matrix element ujiij in Eq. (13.4.7) and the diagram on the
right is the exchange counterpart ujiji. Note the sequence of the indices start from the upper
left corner of the diagram and goes clockwise.

potential which contains the scattering of a particle from state i to j, leading to these two

states having the same spin state. (This is clear from Fig. 13.1.) The repulsive nature of the

exchange potential tends to keep the fermions with parallel spins away from each other. This

is the result of the Pauli exclusion principle obeyed by the variational determinant.

Unlike the old one-particle Schrödinger equation, the effective potential in the Hartree-

Fock equation depends on the one-particle density matrix and, thus, on the wave function we

need to solve. The solution is usually carried out by iteration. The potential is then said to be

selfconsistent. The local part, v + vH , is sometimes called the self-consistent potential.

The Hartree-Fock approximation does a fair job in calculating the total energy of the

electrons in atoms and the electronic configurations of the atoms in the periodic table. The

relative ordering of the 3d and 4f electrons and other similar shells tends to be less reliable.

While the accuracy of one per cent for the total energy by the Hartree-Fock approximation

seems impressive, this discrepancy, which is called the correlation energy, is important for

molecule bonds and solid cohesion. The most important part of the correlation effect is the

repulsion by the electrons of opposite spins beyond the Hartree potential, which is not in the
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exchange potential.

A model of a simple metal is given by a system of interacting electrons in a uniform

background of fixed positive charges, with the amount of charge neutralizing the charge of N

electrons. The system is known as the homogeneous electron gas or the jellium. Problem 11

shows what the Hartree-Fock solutions are. Because of the complete translational symmetry

of the Hamiltonian, the Hartree-Fock orbitals are plane waves. The ground state energy can

be split into a kinetic energy term and a Fock or exchange term. Because of the compensation

effect of the positive background and the electron gas, there is zero contribution from the

Hartree term plus the potential energy due to the positive background charges. To compare the

Hartree-Fock energy with experiment, we need to take simple metals such as the alkali metals

or aluminum and subtract out the electrostatic energy (including the Hartree term). Then, the

result is not as good as for atoms, especially for lower density metals. A particularly egregious

error is that the Fermi velocity (see Problem 11) is infinite. The difference between the exact

energy and the Hartree-Fock energy is known as the correlation energy of the homogenous

electron gas. Note that the kinetic energy in the Hartree-Fock approximation is not the exact

kinetic energy. Therefore, the correlation energy contains a part which is a correction to the

kinetic energy as well as a part which is a correction to the interaction energy. The theory of

the correlation effects is beyond the scope of this text and the reader is referred to [13].

13.5 Density Functional Theory

The density functional theory provides an alternate view to the Schrödinger equation where

the potential is the key to the determination of the properties of the system. It has a long

history starting with the Thomas-Fermi approximation and the Dirac exchange correction in

the early days of quantum theory. The general formulation and modern applications started

in the sixties. The method has been developed into a widely used computational tool for the

studies of the electronic and structural properties of molecules and solids.

For simplicity of exposition, we shall now restrict ourselves to the consideration of a

system of electrons which interact with each other via the Coulomb repulsion and with nuclei

in a fixed configuration. This then applies to a wide range of systems from atoms to molecules
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to condensed matter. It is also possible to extend the theory to other fermions, particularly

systems of nucleons, and to interacting bosons.

The Hamiltonian of our many-electron system is given by

Ĥ = T̂ + V̂ + Û , (13.5.1)

where the kinetic energy term is

T̂ =

∫
dr ψ†(r)

(
− h̄2

2m

)
∇2ψ(r), (13.5.2)

the potential energy in the presence of a fixed constellation of nuclei is

V̂ =

∫
dr ψ†(r)v(r)ψ(r), (13.5.3)

and the mutual Coulomb repulsion between the electrons is

Û =
1

2

∫
dr

∫
dr′ψ†(r)ψ†(r′)u(r, r′)ψ(r′)ψ(r) (13.5.4)

We have seen that the Hartree-Fock approximation falls short in the physical and chemical

properties which depend on the correlation effects. An improvement is to use linear combi-

nation of the Slater determinants, known as the configuration interaction method. However,

the complexity of the computation grows exponentially with the size of the system. For ex-

tensive systems, especially metals, the model of homogeneous electron gas is studied for its

interaction effects. (See Sec. 13.5.6 and Problem 11).

The density functional theory provides an alternative way to proceed. First, the elec-

tron density distribution replaces the many-electron wave function as conceptually the key

quantity to compute. Historically, this point of view started with the Thomas-Fermi approxi-

mation. Second, the theory provides an approximation which makes use of the properties of

the homogeneous electron gas which are known. After much testing in thirty some years, the

strengths and weaknesses of the approximation are pretty well known.

13.5.1 The density functional theorem or Hohenberg-Kohn theorem

All properties of an interacting electron system is a functional of the density distribution.
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Let us elaborate on the statement of the theorem. In the Hamiltonian of the interacting

electron system, we observe three inputs which determine the properties of the system, the

electron mass, the Coulomb interaction between two electrons and the external potential v(r).

If we consider the class of all many-electron systems which include atoms, molecules, liquids,

and solids, the electron mass and the interaction potential between two electrons are constant

throughout the class but each external potential v(r) uniquely determines all the properties

of a particular system. In principle, once the potential is given, the Schrödinger equation for

the system may be solved for the energy eigenfunctions and any property calculated. Thus,

we say a property is a functional of the potential v(r). The word “functional” is used in place

of “function” because the variable is not a number but a function itself. In particular, the

electron ground-density density distribution

n(r) = 〈Ψ|ψ†(r)ψ(r)|Ψ〉, (13.5.5)

is a functional of the potential. The Density Functional Theorem asserts that the converse is

also true, namely that the potential is, apart from an arbitrary constant, uniquely determined

by the density n(r).

The proof is simple, showing, by reductio ad absurdum, that no two potentials differing

by more than a constant can correspond to the same density distribution. Suppose that there

are two potentials v(r) and v′(r) which differ by more than a constant and which produce

the same density n(r). Aside from n(r), all other quantities associated with the system with

potential v′(r) are denoted by primed symbols. From the variational principle we have the

ground-state energy

E = 〈Ψ|H|Ψ〉 ≤ 〈Ψ′|H|Ψ′〉, (13.5.6)

where Ψ and Ψ′ are the ground states of the systems with potentials v(r) and v′(r), respec-

tively. The equality is excluded in Eq. (13.5.6). Were the equality to hold, Ψ′ would be

another state of H of the same energy as the ground state and

(V̂ − V̂ ′)|Ψ′〉 = (E − E ′)|Ψ′〉. (13.5.7)

It would mean that the wave function had to vanish where the potentials differ which is

impossible unless they differ only by a constant.
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The last expression of Eq. (13.5.6) is

〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′ + (V̂ − V̂ ′)|Ψ′〉 = E ′ +

∫
dr[v(r) − v′(r)]n(r). (13.5.8)

Hence, the inequality (13.5.6) becomes

E < E ′ +

∫
dr[v(r) − v′(r)]n(r). (13.5.9)

Interchanging the roles of the two systems, we have

E ′ < E +

∫
dr[v′(r) − v(r)]n(r). (13.5.10)

Addition of the two inequalities lead to the absurd result that E + E ′ < E ′ + E.

When the theorem was first published, there were many objections from the physics and

chemistry communities. One reason was that it was then known that the knowledge of one-

particle density matrix n(r, r′) was sufficient to determine all the properties of the interacting

system. Since the density is only the diagonal part of the density matrix, it contains less

information than the density matrix. How could it then replace the density matrix? A simple

and familiar way is to view the change of the functional variable from the potential v(r) to

the density n(r) as analogous to the Legendre transformation in thermodynamics when the

ground-state energy as a functional of v contains the potential energy term

V ≡ 〈Ψ|
∫

dr ψ†(r)v(r)ψ(r)|Ψ〉 =

∫
drn(r)v(r), (13.5.11)

which is a “product” of v and n, similar to the PV , TS or MH term in the free energy in

thermodynamics.

As a corollary of the theorem, since v(r) is a functional of n(r), every property of the

electron system is and, in particular, so are the ground-state expectation values of the kinetic

energy and interaction energy.

Clearly, the theorem can be applied to more than the class of electron systems. It could

be for a class of fermions or of bosons. In the way the theorem was stated above, the math-

ematical niceties of the Banach spaces of n(r) and of v(r) are glossed over. A constructive

procedure which avoids such problems to some extent was given by Levy.
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As a result of the density functional theorem, the ground-state energy can be put in the

form:

E ≡ E[v, n] =

∫
drn(r)v(r) + F [n(r)] (13.5.12)

where the first term is the ground-state expectation of V and F [n] is the expectation value of

T + U , the kinetic energy and interaction energy. If the electrostatic energy due to the static

electron charge distribution −en(r) is explicitly written out,

F [n] =
1

2

∫
dr

∫
dr′n(r)u(r − r′)n(r′) + G[n]. (13.5.13)

The energy functional G can further be expressed in terms of the one-particle density matrix

n(r, r′) = 〈Ψ|ψ†(r′)ψ(r)|Ψ〉, (13.5.14)

and the two-particle correlation function

c(r, r′) = 〈Ψ|ψ†(r)ψ†(r′)ψ(r′)ψ(r)|Ψ〉 − n(r)n(r′), (13.5.15)

which is related to the pair distribution function. Hence,

G[n] =

∫
drg(r, [n]), (13.5.16)

g(r, [n]) = − h̄2

2m
∇2n(r, r′) |r′=r +

1

2

∫
dr′u(r′)c(r − 1

2
r′, r +

1

2
r′). (13.5.17)

For later use, we have introduce the energy density g(r, [n]) which is a local function of r as

well as a functional of the density n(r).

13.5.2 The variational theorem with respect to the density

If another density n′(r) which corresponds to the system with the potential v′(r) which differs

by more than a constant from v(r), the substitution of n′(r) in Eq. (13.5.12) will yield an

energy larger than the ground state energy.

As before, we have

〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉. (13.5.18)
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But the right-hand side is

〈Ψ′|H|Ψ′〉 = 〈Ψ′|V̂ |Ψ′〉 + 〈Ψ′|T̂ + Û |Ψ′〉 =

∫
drv(r)n′(r) + F [n′]. (13.5.19)

Hence,

Ev[n] < Ev[n
′]. (13.5.20)

For a given potential v(r), the correct density put in Eq. (13.5.12) yields the lowest energy.

The variational theorem can be put in an alternative form. Let δn(r) be a small deviation

from the correct density distribution n(r) without changing the total number of particles,
∫

drδn(r) = 0. The first-order change in energy is zero,

δEv[n] = 0. (13.5.21)

Combining this equation with the condition of constant number by means of a Lagrange

multiplier µ leads to

δEv[n] − µ

∫
drδn(r) = 0. (13.5.22)

A physical interpretation for µ is the chemical potential, i.e. the energy required to remove

or add an electron in an extensive (or thermodynamic) system. From the definition of the

functional derivative as

F [n + δn] − F [n] =

∫
dr

δF

δn(r)
δn(r) + O((δn)2), (13.5.23)

Eq. (13.5.12) yields

δF

δn(r)
+ v(r) = µ. (13.5.24)

This functional differential equation in principle determines the density distribution.

The two theorems form the theory framework for an approach to the problem of the inho-

mogeneous interaction electron system. Instead of the usual way of attempting to construct

the ground-state wave function, we let the electron density distribution play the central role to

characterize the system. The task is first to construct the functional F [n], i.e. the functional
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dependence of the kinetic plus interaction energy on the density n(r). In what follows, we

shall examine a number of ways to construct F [n]. Once F [n] is at hand, one can then try to

solve the variational equation.

The most obvious approximation is to find the infinite series in powers of v(r) and convert

it to a series in powers of n(r)− n0. In practice, this is not a good computational scheme but

it is useful in contemplating some structures of the theory, such as in showing the existence

of the density functional for a set of the density functions near a constant density.

13.5.3 Systems of noninteracting fermions

The density functional theory certainly applies to the many-fermion systems without interac-

tion. This is more than an exercise to orient ourselves with the density functional theory. It

can actually tell us what is missing in the interaction effects and also provide a handle to solve

the bland-looking functional differential equation (13.5.24). The sum of the single-particle

energies provides the ground-state energy in the density-functional form

Es =

∫
drv(r)n(r) + Ts[n], (13.5.25)

where Ts[n] denotes the kinetic energy of the noninteracting fermion system with the density

n(r). The variational equation which determines the density is

δTs

δn(r)
+ v(r) = µ. (13.5.26)

Although we do not know if the variational equation has more than one solution for the

density, we do know that it has at least one, given by solving the single-particle Schrödinger

equation,
[
− h̄2

2m
∇2 + v(r)

]
φj(r) = εjφj(r), (13.5.27)

and constructing the density distribution

n(r) =
∑

j

θ(µ − εj)|φ(r)|2. (13.5.28)

We have this rather useful result that a functional differential equation of the form of

Eq. (13.5.26) can be solved by the associated one-particle Schrödinger equation. Now we just
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need to mangle an energy functional into the form of Eq. (13.5.25). This observation enables

us to avoid the unpleasant task of having to construct Ts[n], although in some circumstances it

is possible to do so. The construction of the perturbation series in powers of the potential v(r)

for the noninteracting case is easier than the interacting case mentioned in the last subsection.

The power series of Ts in v(r) is then inverted to a power series of Ts[n] in terms of n(r)−n0,

the deviation of the density about the average.

13.5.4 The self-consistent field approximation

In the spirit of the Hartree approximation we make the approximation for the functional F [n]

by keeping just the electrostatic interaction energy term,

F [n] =
1

2

∫
dr

∫
dr′n(r)u(r − r′)n(r′) + Ts[n]. (13.5.29)

The variational equation is then

δTs

δn(r)
+ v(r) + vH(r) = µ. (13.5.30)

By the argument in the last subsection, the solution for the density is given by solving the

selfconsistent field equation

[
− h̄2

2m
∇2 + vscf (r)

]
φj(r) = εjφj(r), (13.5.31)

where the self-consistent field potential is

vscf (r) = v(r) + vH(r). (13.5.32)

Compare this with the results in the section on the Hartree and Fock approximations.

13.5.5 The density functional equation

The previous two subsections give us a way to develop the density functional theory further.

Let us write

G[n] ≡ Ts[n] + Exc[n]. (13.5.33)
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The ground-state energy is now split up into

E = Ts[n] +

∫
drv(r)n(r) +

1

2

∫
dr

∫
dr′n(r)u(r − r′)n(r′) + Exc[n], (13.5.34)

i.e., the kinetic energy of noninteracting fermions which have the same density n(r), the

potential energy due to the external potential, the electrostatic interaction energy, and the

energy beyond the Hartree energy. Thus, we follow the common usage of naming Exc[n] as

the exchange and correlation energy. We note that

Ts[n] �= 〈Ψ|T̂ |Ψ〉, (13.5.35)

i.e., the kinetic energy of the noninteracting system is not equal to the true kinetic energy of

the ground state of the interacting system with the same density distribution.

The variational equation becomes

δTs

δn(r)
+ veff (r) = µ. (13.5.36)

The effective potential has three terms:

veff (r) = v(r) + vH(r) + vxc(r). (13.5.37)

The new term,

vxc(r) =
δExc

δn(r)
, (13.5.38)

is the exchange-correlation potential. It is a local function of r and a functional of the density.

For simplicity, the functional dependence of vH , vxc and veff is understood.

The density is then given by

n(r) =
∑

j

θ(µ − εj)|φj(r)|2. (13.5.39)

where the orbitals are the solutions of the density functional equation,
[
− h̄2

2m
∇2 + veff (r)

]
φj(r) = εjφj(r). (13.5.40)

Note that the reduction of the solution of a many-body problem to the solution of an ef-

fective one-particle Schrödinger equation is exact. The theory concentrates the work involved

in including the exchange and correlation effects into the construction of vxc(r).
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13.5.6 The gradient expansion

As a preparation for an approximation of the exchange-correlation potential which turns out

to be widely used, let us consider an approximation dated back to Thomas and Fermi. The

density functional theory is also a very natural framework for the Thomas-Fermi approxima-

tion and its extensions.

Imagine that the spatial variation of the density is actually slowly varying. Then, in a

neighborhood of the point r, we might approximate first the local properties of the system as

a function of the local density n(r). The energy density in Eq. (13.5.17) for the homogeneous

gas is then given by

g0(n) = nεh(n), (13.5.41)

where εh(n) is the total energy per electron of the homogenous electron gas. It can be broken

up into three parts

εh(n) = ε0(n) + εx(n) + εc(n). (13.5.42)

The first two terms are the noninteracting part of the kinetic energy and the exchange energy,

given by

ε0(n) =
3h̄2

10m
(3π2n)2/3 =

1.1050

r2
s

a.u., (13.5.43)

εx(n) = −3e2

4π
(3π2n)1/3 = −0.4582

rs

a.u., (13.5.44)

where rs is the mean distance of the electron in units of the Bohr radius given in terms of the

density by n = 3/(4πr3
sa

3
0). (See Problem 11.) The correlation energy was first considered by

Wigner [29] in the low density limit and an interpolation formula was given with correction

by [19],

εc(n) = − 0.44

rs + 7.79
a.u.. (13.5.45)

The correlation energy εc(n) has been evaluated as a function of the constant electron density

[4]. The method is based on a variational wave function which contains two-particle correla-

tion (the Jastrow function). A convenient form of the result may be written as an analytical
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formula [17]:

εc(n) = − 0.1423

1 + 1.0529
√

rs + 0.3334rs

, for rs ≥ 1; (13.5.46)

= −0.0480 + 0.0311 ln rs − 0.0116rs + 0.0020rs ln rs, for rs ≤ 1.

Thus, we can consider the total energy per electron as a function of density as known.

If the density distribution actually varies gently over space, the first approximation for the

energy functional is

G[n] =

∫
drn(r)εh(n(r)). (13.5.47)

The classic Thomas-Fermi approximation keeps only the kinetic energy term in Eq. (13.5.43).

The variational equation becomes

µh(n(r)) + v(r) + vH(r) = µ, (13.5.48)

where

µh(n) =
d

dn
[nεh(n)] (13.5.49)

is the chemical potential of the homogeneous gas at the density n. When the potential v(r) is

given, the variational equation may be solved selfconsistently for the density n(r).

To improve on the local approximation, one would include the effects of the gradient of

the density. The gradient expansion of the energy density has the form

g(r, [n]) = g0(n(r)) +
∑

α

gα
1 (n(r))

∂

∂rα

n(r) (13.5.50)

+
∑

α,β

[
gα,β
1,1 (n(r))

∂

∂rα

n(r)
∂

∂rβ

n(r) + gα,β
2 (n(r))

∂2

∂rα∂rβ

n(r)

]
+ . . . .

Rotational symmetry excludes the odd-power gradient terms and simplifies the expression to

g(r, [n]) = g0(n(r)) + g1,1(n(r))|∇n(r)|2 + . . . . (13.5.51)

We have also eliminated the term g2(n(r))∇2n(r) since it can be expressed as a divergence

plus terms linear in ∇n(r).
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Application of the Thomas-Fermi approximation to the atoms has given a good trend

for variation of some properties of atoms as functions of the atomic number. However, the

density reflects too faithfully the features of the potential. Thus, it diverges at the nucleus.

The density also lacks the shell structure. Piecemeal addition of the gradient correction terms

yields results which oscillate about the true solution.

13.5.7 The local-density approximation

Since the quantum effects on the density are retained approximately in the Hartree approxima-

tion, retention of the kinetic part, Ts[n], should be a vast improvement over the Thomas-Fermi

approximation. The problem now becomes the construction of the exchange-correlation en-

ergy functional Exc[n]. A simple approximation in the spirit of the Thomas-Fermi approxi-

mation is the local-density approximation:

Exc =

∫
drεxc(n(r))n(r), (13.5.52)

where εxc(n) is the exchange-correlation energy per electron of the homogeneous gas at the

density n. The exchange-correlation potential is then given by

vxc = µxc(n) ≡ d

dn
[nεxc(n)], (13.5.53)

the exchange-correlation part of the chemical potential of the homogeneous electron gas at

the local density n. Gradient corrections have also been given in the literature.

The many-electron problem is now reduced to solving the one-particle Schrödinger equa-

tion (13.5.40) with the effective potential in the local-density approximation,

vLDA(r) = v(r) + vH(r) + µxc(n(r)). (13.5.54)

This was first tried out on a number of atoms [25]. The comparison of a number of properties

with experiment and with the Hartree-Fock approximation was quite encouraging and the

amount of computation, being similar to the Hartree approximation, was considerably less

than the Hartree-Fock approximation. Since then, many calculations with vastly larger scale

problems have been carried out by many workers, particularly in quantum chemistry and in
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solid state physics. The results have been very useful as guides to experiments and to inter-

pretation of experiments. There are also sufficient defects in the local-density approximation

to keep this field an active research area.

13.5.8 Summary

WHAT IS DENSITY FUNCTIONAL THEORY?

The one-line answer is that it is many-body quantum mechanics for everybody. By ex-

pressing the ground-state energy as a functional of the density, the theory reduces the many-

body problem to an equivalent one-particle theory with all the many-body effects collected

in an effective potential. In this form, simple and effective approximation for including the

many-body effects can be devised.

Although I have not explicitly mentioned it in this section, the spin-dependence is implicit

in r and could be included explicitly in the spin-polarized cases or implicitly in the spin-

compensated cases. Extension to systems at final temperature is also possible. Extensions

to other fermion and boson systems have also been made. The wide range of applications

possible is clearly outside the scope of this introductory account. The reader is referred to the

extensive literature.

13.6 Theory of Superconductivity

The superconducting ground state of a system of fermions with a mutual attractive interaction,

known as the BCS state, is made up of pairs of fermions (known as the Cooper pairs). The

state owns its very existence to the interaction. It is the foundation of a theory of the striking

properties of the superconductors for their electric conduction without resistance, perfect

diamagnetism, and unusual electromagnetic properties. The pairing state is also valuable in

understanding the distinct nature of the nuclei with even number of nucleons compared with

the odd-number ones. The concept of BCS pairing and the deduced vortices are also applied

to elementary particle theory, such as the chiral symmetry breaking by the condensation of

particle-antiparticle pair or the spontaneous symmetry breaking in the Higgs sector by quark-

antiquark pair condensation. Strictly speaking, these latter condensations are closer to the
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electron-hole condensation in solids giving rise to charge density waves, whose theory was

first given by Fröhlich. We shall reach this important concept of pairings by a slight extension

of the Hartree-Fock method while emphasizing that the small step in methodology should not

obscure the giant step in concept.

13.6.1 The reduced BCS Hamiltonian

The Hamiltonian of the fermion gas with an attractive interaction is written as

H =
∑

kσ

εkc
†
kσckσ +

∑

k,k′

V (k,k′)c†k↑c
†
−k↓c−k′↓ck′↑, (13.6.1)

where the single particle energy εk is measured from the Fermi energy, the spin label σ

denotes the up (↑) and down (↓) spin states and the interaction is given by a simple model for

ease of evaluation while retaining the essential properties,

V (k,k′) = −V θ(D − |εk|)θ(D − |εk′|), (13.6.2)

with V being a positive constant. In the case of the electrons in a superconductor, the attrac-

tion may be thought of as the net result of the attractive interaction between two electrons

mediated by a phonon and the direct Coulomb repulsion. The phonon is a quantized unit of

energy of a crystal lattice vibration mode (see problem 16). This is a somewhat oversimpli-

fied picture. The cutoff D is then roughly of the order of the maximum phonon frequency

times h̄. To demonstrate the existence of the BCS state, it is sufficient to consider D much

smaller than the Fermi energy. Hence, the single particle energy is εk = vF (|k| − kF ) to

first order in the excitation vector from the Fermi surface, where vF = kF /m is the Fermi

velocity at the Fermi radius kF . Notice that the interaction term does not contain all the terms

in the general fermion-fermion interaction. The reason for keeping only the special terms

containing pairs of electrons with opposite momentum and spin directions follows from the

Cooper finding that the attractive interaction causes such a pair added to the Fermi sea to be

unstable, i.e., having a lower energy for the whole system than the Hartree-Fock ground state,

(see Problem 18).
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13.6.2 The Bogoliubov-Valatin Method

The Hartree-Fock approximation may be viewed as a factorization scheme where the two

particle correlation 〈c†ic†jckc�〉 is approximately,

〈c†ic†jckc�〉 ≈ 〈c†ic�〉〈c†jck〉 − 〈c†ick〉〈c†jc�〉. (13.6.3)

The second term is the exchange counterpart of the first. Now suppose we make pairs of

the four operators without regard to whether they are creation or annihilation operators, we

would obtain an extra term 〈c†ic†j〉〈ckc�〉. It may be observed that if the angular brackets denote

the expectation of an N particle state, these brackets would vanish. However, to incorporate

the Cooper pair, one has to use a linear combination states of different numbers of particles.

Bogoliubov has shown that in the limit of infinite N the pairing states would dominate the N

particle state. To proceed with the factorization scheme to include the pairing states,

〈c†k↑c
†
−k↓c−k′↓ck′↑〉 ≈ 〈c†k↑c

†
−k↓〉〈c−k′↓ck′↑〉, (13.6.4)

we actually drop the Hartree-Fock terms with the understanding that the modification of the

single particle energy by the Hartree-Fock and correlation terms simply changes the Fermi

velocity to vF = kF /m∗ (mass renormalization).

In the Bogoliubov-Valatin method, this is equivalent to an expansion of the pair operator

c−k↓ck↑ = βk + (c−k↓ck↑ − βk), (13.6.5)

where βk = 〈c−k↓ck↑〉, (13.6.6)

is a macroscopic “condensation” of order unity and the fluctuation correction within the

brackets tends to zero for large N . With the neglect of the second order fluctuation terms, the

reduced Hamiltonian becomes then an effective single particle Hamiltonian,

He =
∑

kσ

εkc
†
kσckσ +

∑

k,k′

V (k,k′)[c†k↑c
†
−k↓βk′ + β∗

kc−k′↓ck′↑ − β∗
kβk′ ]. (13.6.7)

The Hamiltonian may be simplified by introducing the order parameter,

∆k = −
∑

k′

V (k,k′)βk′ , (13.6.8)
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leading to the form bilinear in the operators,

He =
∑

k

[c†k↑ ck↑]
[

εk −∆k

−∆∗
k −εk

] [
ck↑
c†−k↓

]
−

∑

k

(εk − ∆∗
kβk). (13.6.9)

For the ground state, the order parameter ∆k may be chosen to be real. The matrix is easily

then diagonalized by the Bogoliubov-Valatin transformation,
[

ck↑
c†−k↓

]
=

[
cos θk sin θk

− sin θk cos θk

] [
γk0

γ†
k1

]
. (13.6.10)

The diagonalization of the 2 × 2 matrix in the Hamiltonian in Eq. (13.6.9) requires the value

of θk given by

tan(2θk) =
∆k

εk

. (13.6.11)

Thus, the eigenvalues and the state coefficients are given by

Ek =
√

∆2
k + ε2

k, (13.6.12)

cos θk =

√
1

2

(
1 +

εk

Ek

)
, (13.6.13)

sin θk =

√
1

2

(
1 − εk

Ek

)
. (13.6.14)

The transformed Hamiltonian is

He =
∑

k

Ek(γ
†
k0γk0 + γ†

k1γk1) +
∑

k

(εk − Ek + ∆kβk). (13.6.15)

The Hamiltonian represents a system of independent fermions with energies Ek. The two

new sets of one-particle states are, from the inverse of Eq. (13.6.10), defined by

γ†
k0 = c†k↑ cos θk − c−k↓ sin θk, (13.6.16)

γ†
k1 = ck↑ sin θk + c†−k↓ cos θk. (13.6.17)

The operators γ†
kj, j = 0, 1, obey the usual anticommutation relations and each creates a

fermionic quasiparticle state composed of an unusual mixture (from the Hartree-Fock view-

point) of an electron and a hole of a time-reversed state.
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The problem is a self-consistent one like the Hartree-Fock one. When the ground state

is specified (see the next subsection), the occupation number of the quasi-particle state k is

given by the expectation value,

f(Ek) = 〈γ†
k0γk0〉, (13.6.18)

in terms of which the expectation value βk defined in Eq. (13.6.6) can now be expressed:

βk = [1 − 2f(Ek)] sin θk cos θk = [1 − 2f(Ek)]
∆k′

2Ek′
. (13.6.19)

From Eq. (13.6.8), the order parameter is then governed by the equation, known as the gap

equation,

∆k = −
∑

k′

V (k, k′)[1 − 2f(Ek′)]
∆k′

2Ek′
. (13.6.20)

13.6.3 The BCS ground state

The ground state |Ψ〉 may be considered the vacuum states for the γ†
kj particles (called bo-

goliubons),

γkj|Ψ〉 = 0. (13.6.21)

Thus, f(Ek) = 0. From the separable form of the model attractive potential in Eq. (13.6.2),

the solution for the gap has the form of the step function,

∆k = ∆θ(D − |εk|). (13.6.22)

The solution is either ∆ = 0 for the normal state or for the superconducting state,

1 =
N(0)V

2

∫ D

−D

dε
1√

ε2 + ∆2
= N(0)V sinh−1

(
D

∆

)
, (13.6.23)

where we have assumed that D is much less than the Fermi energy so that we may treat the

density of states of the normal state Fermi gas in the range of ±D around the Fermi level to

be constant at the density of states at the Fermi level, N(0). Hence, the energy gap is given

by

∆ =
D

sinh
[

1
N(0)V

] ≈ 2De−1/N(0)V , (13.6.24)
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for small N(0)V .

It may be shown that the BCS variational wave function yields the ground state (Prob-

lem 20),

|Ψ〉 =
∏

v

(
cos θk + sin θk c†k↑c

†
−k↓

)
|0〉, (13.6.25)

where |0〉 is the true vacuum of no particles. The superconducting ground state energy is

given by

Es =
∑

k

(εk − Ek + ∆kβk) . (13.6.26)

The corresponding normal state energy of the system is given by letting ∆ tending to zero,

En = 2
∑

k

εkf(εk). (13.6.27)

The condensation energy which is defined as the difference between the normal state energy

and the superconducting state En − Es is then given by

En − Es = 2N(0)

∫ D

−D

dε

[
E − ε − ∆2

E

]
, (13.6.28)

≈ 1

2
N(0)∆2. (13.6.29)

where E =
√

ε2 + ∆2. The final expression can be explained by the gap energy times the

number of states in the gap of the order N(0)∆.

13.6.4 The excited states

To construct the excited states, we can just add bogoliubons to the ground state, such as

γ†
kj|Ψ〉. Ek is the additional energy of such a particle. The density of states of these quasi-

particles per unit volume is

Ns(E) =
1

Ω

∑

k

δ(E − Ek) = N(0)
E√

E2 − ∆2
. (13.6.30)

Note that the number of states is conserved, i.e., there is no change from the total number of

states in the normal state. The density of states can be probed by a tunnel junction made of a

superconductor and a normal metal separated by a thin layer of an insulator.
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13.7 Problems

1. Normalization of boson and fermion states.

(a) Show that the normalization factor of 1/
√

2 is indeed automatically generated in

the two-particle state,

ψ†
s(r2)ψ

†
s(r1)|0〉 =

1√
2
[|r2〉2|r1〉1 + (−1)s|r1〉2|r2〉1], (13.7.1)

for bosons (s = 0) and fermions (s = 1).

(b) The wave function of a two-particle state is 〈r1, r2|α, β〉, where 〈r1, r2| is given

by the product state in Eq. (13.2.2) and the normalized state of discrete indices is

given by

|α, β〉 = Cα,βc†αc†β|0〉, (13.7.2)

Cα,β being the appropriate normalization constant you are to determine, distin-

guishing between the cases whether α = β or not. Find the expression of the

permanent (for bosons) and determinant (for fermions) for the state wave func-

tion in terms of the single-particle wave functions 〈r|α〉 and 〈r|β〉 in two ways:

i. by expressing 〈r1, r2| in the second quantized form;

ii. by expressing |α, β〉 as product states of |α〉 and |β〉.

2. A one-state system of many bosons. Suppose that there is only one single-boson state

|ψ〉 (normalized) with energy ε. Denote the n boson state by |n〉, where

|n〉 = |ψ〉n|ψ〉n−1 . . . |ψ〉1, (13.7.3)

in terms of the state of each particle in its Hilbert space.

(a) Show that in the second quantized form,

|n〉 =
1√
n!

(c†)n|0〉, (13.7.4)

where c† is the creation operator of the boson in state |ψ〉.
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(b) Find the Hamiltonian of the many-boson system. Show that |n〉 is its eigenstate.

Find the associated eigenvalue.

(c) Explain carefully the similarities and difference between this system and the

single-particle harmonic oscillator. In particular, delineate the state |ψ〉 of the

bosons and the energy eigenstates of the harmonic oscillator.

3. A one-state fermion system. A system of fermions has only one single-particle state

|ψ〉 with energy ε. Denote the creation operator for a fermion in that state by c†.

(a) Find the Hamiltonian in second quantized form.

(b) Map c, c†, and the Hamiltonian to the Pauli spin operators σ in the spin-1/2 prob-

lem.

(c) Are the commutation rules for the spin operators reserved?

(d) Is it valid to assume that the Hamiltonian is isotropic in the pseudo-spin space?

(Hint: does the rotation of the Hamiltonian violate the fermion number conserva-

tion?)

4. The Hubbard model and the stability of H−. Consider the problem of putting from

zero to two electrons in the hydrogen atom. Model it with four normalized states: the

single proton with no electron state, |0〉; one electron in 1s spin-up state, |+〉; one

electron in 1s spin-down state, |−〉; and the two-electron state in the same 1s singlet

| + −〉.

(a) Put the four states in the second quantized form.

(b) Deduce the model Hamiltonian [9] including electron-electron interaction in these

four basis states only in terms of the creation and annihilation operators of the |±〉

states in the form

H =
∑

σ

εσc
†
σcσ + uc†+c†−c−c+, (13.7.5)

where σ = ±. Identify the coefficients in the Hamiltonian.
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(c) Show that the four basis states given are the eigenstates of the Hamiltonian and

find their eigenvalues.

(d) By comparing the eigenenergy for | + −〉 with the total energy of a neutral hy-

drogen atom plus an electron at infinity, show that the two-electron bound state

in H− is unstable in this model. You may use the Coulomb energy evaluated in

Eq. (12.3.12).

(e) The result from the model contradicts the experimental fact that two electrons do

form a bound state in H−. What approximate measures would you take to make a

better estimate of the two-electron state?

(f) Write down the second quantized form of the perturbation term to the Hamiltonian

in the presence of a circularly polarized light (left or right handed) propagating in

the z direction, i.e., in the same direction as the spin-up state points.

5. Color Quarks. Consider a system of three quarks made of two kinds of quarks u and

d. For the charge, spin and Baryon number properties, see Sec. 5.10. For the color

property, see Sec. 8.6.2. Denote the state of a quark by |qC,σ〉, where q = u or d for the

up and down quarks, C = R, G, B for the color states, the eigenstates of λ3 and λ8 of

the generators of SU(3), and σ = ± for the spin up and down states. Construct both in

terms of the one-quark states and in second quantized form, the general state of

(a) ∆++ = uuu;

(b) a proton, p = uud;

(c) a neutron, n = udd.

Explain in each case whether the color is necessary. Which state is invariant under the

rotations in the color SU(3)?

6. Anticommutation relations for fermions. From the definition of the operators

ψ†(r)AN |r1, . . . , rN〉 = AN+1|r, r1, . . . , rN〉, (13.7.6)

ψ(r)AN |r1, . . . , rN〉 =
N∑

�=1

(−1)�−1δ(r − r�)AN−1|r1, . . . , r�−1, r�+1, . . . , rN〉,
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acting on the antisymmetrized position eigenstate AN |r1, . . . , rN〉, prove the commu-

tation relations,

{ψ(r), ψ(r′)} = 0, (13.7.7)

{ψ(r), ψ†(r′)} = δ(r − r′). (13.7.8)

7. Examples of Wick’s theorem. Evaluate in a non-interacting many-particle state for

both the boson and fermion systems,

(a) 〈Ψ|ψ†(r2)ψ
†(r1)ψ(r′1)ψ(r′2)|Ψ〉;

(b) 〈Ψ|c†γc†εcαcβ|Ψ〉.

8. Slater determinants. Let the fermion annihilation operator be expressed in an or-

thonormal series

ψ(r) =
∑

j

ϕj(r)cj. (13.7.9)

Show explicitly that for N = 2, 3, the wave function 〈r1, . . . , rN |c†j1 . . . c†jN
|0〉 is a

Slater determinant.

9. The number-state representation.

Let the orthonormal set of {|ϕj〉}, j = 0, 1, 2, . . ., be the basis set of one-particle states.

An independent N-particle state can be described by the number of particles occupying

each state nj , denoted by |n0, n1, . . . , nj, . . .〉, where
∑

j nj = N . Let

ψ(r) =
∑

j

ϕj(r)cj. (13.7.10)

Show that for the boson system,

cj|n0, n1, . . . , nj, . . .〉 =
√

nj|n0, n1, . . . , nj − 1, . . .〉,

c†j|n0, n1, . . . , nj, . . .〉 =
√

nj + 1|n0, n1, . . . , nj + 1, . . .〉; (13.7.11)



13.7. PROBLEMS 659

and for the fermion system,

cj|n0, n1, . . . , nj, . . .〉 = (−1)
∑j−1

k=0 nknj|n0, n1, . . . , 1 − nj, . . .〉, (13.7.12)

c†k|n0, n1, . . . , nj, . . .〉 = (−1)
∑j−1

k=0 nk(1 − nj)|n0, n1, . . . , 1 − nj, . . .〉.

10. The propagator. (Use the atomic units, i.e., h̄ = 1, e′ = 1, and me = 1.) For a system

of N noninteracting fermions in no external potential, the one-particle Green’s function

is defined as

G(r, t; r′, t′) = −i〈T{ψ(r, t)ψ†(r′, t′)}〉, (13.7.13)

where the angular brackets denote the ground-state average,

ψ(r, t) = eiHtψ(r)e−iHt, (13.7.14)

and T is the time-ordered operator,

T{ψ(r, t)ψ†(r′, t′)} =

{
ψ(r, t)ψ†(r′, t′) if t > t′;
−ψ†(r′, t′)ψ(r, t) if t < t′.

(13.7.15)

Evaluate the Green’s function by first proving that its Fourier transform is given by

G(k, ω) =
1 − nk

ω − εk + i0
+

nk

ω − εk − i0
, (13.7.16)

where nk and εk are the occupation number and energy of the k state.

Express the density distribution n(r), the occupation number nk, and the total energy

of the system in terms of this Green’s function.

11. The jellium. Also known as the homogeneous electron gas. For simplicity, use the

natural units in which h̄ = 1, me = 1, and e2/4πε0 = 1.

(a) By expanding the annihilation operator in the plane-wave basis set, show that the

Hamiltonian of the whole system is given by the form,

H =
∑

ks

εksc
†
kscks +

1

2V

∑

qkk′ss′

u(q)c†k+q,sc
†
k′s′ck′+q,s′cks. (13.7.17)

You need to supply the meanings of the symbols.
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(b) Establish the Hartree-Fock equation, find the single-electron Hartree-Fock energy

and verify that indeed the single-electron eigenstate is a plane-wave state. Find

the Fermi energy (the single-particle energy of the highest occupied state, i.e., at

kF ).

(c) Construct the ground state in the Hartree-Fock approximation. Show that the

electron occupation is given by

nks = θ(kF − k), (13.7.18)

where the Fermi wave vector kF is given in terms of the constant electron density

n by

k3
F = 3π2n. (13.7.19)

(d) Find the Hartree-Fock ground-state energy as the total energy per particle. (See

Sec. 13.5.6).

(e) Find the kinetic and exchange parts of the chemical potential, µ0(n) and µx(n) as

functions of the density n.

(f) Find the single-particle “velocity” or “group velocity” as a function of k, and its

behavior near kF .

12. Fermion pair-distribution functions. For the system of noninteracting fermions at

zero temperature:

(a) Find the spin-dependent one-particle density matrix

nmm′(r, r′) = 〈Ψ|ψ†(r′, m′)ψ(r, m)|Ψ〉, (13.7.20)

where m = ±1 denotes the spin direction and Ψ denotes the ground state. Sketch

it as a function of |r − r′|.

(b) Find the spin-dependent pair-distribution function,

gmm′(r) = 〈Ψ|ψ†(0, m′)ψ†(r, m)ψ(r, m)ψ(0, m′)|Ψ〉
(

2

n

)2

. (13.7.21)

Sketch it as a function of |r|.
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13. Kohn’s Theorem.[10] A static uniform magnetic field B is maintained in an interacting

homogeneous electron gas. Define the kinetic momentum of the whole system as

K =

∫
drψ†(r)(p + eA)ψ(r). (13.7.22)

Prove that

d �K

dt
= − e

m
K × �B. (13.7.23)

Hence, show that, if B = (0, 0, B) and K+ = Kx + iKy and |Ψ0〉 is the ground state

with energy E0, then K+|Ψ0〉 is an energy eigenstate of the interacting system with

energy E0 + h̄ωc, where ωc is the cyclotron frequency eB/m.

14. Thomas-Fermi screening with exchange and correlation corrections. Introduce a

fixed point charge of charge e (proton charge) into a jellium of a given density n0. Treat

the potential and the change in electron density as small and the electron dynamics

in the local-density approximation for the density functional terms Ts[n], Ex[n], and

Ec[n].

(a) In the Thomas-Fermi approximation, show that the effective potential of the im-

purity seen by an electron is given by the form

veff(r) = − e2

4πε0r
e−kTF r, (13.7.24)

or the Fourier transform,

veff(q) = − e2

ε0(q2 + k2
TF )

. (13.7.25)

Supply an expression for the screening vector kTF .

(b) Find the exchange correction to the effective impurity potential.

(c) Find the correlation correction to the effective potential. You may use any reason-

able form of the correlation energy per electron.

15. Density functional theory in the presence of a static magnetic field?
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(a) First neglect the vector potential modification of the kinetic energy (i.e. the orbital

motion) and include only the spin-magnetic field term. Show explicitly how the

total density n(r) = n↑(r)+n↓(r) and the spin density m(r) = n↑(r)−n↓(r) can

be the two variables for the density functional of the ground-state energy. Explain

how to calculate these densities.

(b) Neglect the spin part of the Hamiltonian and consider only the vector potential

modification of the kinetic energy. Show by symmetry argument that the density

is still a constant in a jellium if the magnetic field is uniform. Argue, therefore,

that the density functional theory with only the density functional variable is not

valid. Speculate what additional variables are needed.

16. Quantization of a scalar field. The quantization of the motion of the elastic string is

perhaps the simplest example of a quantized field. We study this problem as a precursor

to the quantization of the electromagnetic field.

(a) Show from first principles that the classical Hamiltonian of an elastic string is

given by [14]

H =

∫
dx

[
p(x)2

2ρ
+

τ

2

{
∂u(x)

∂x

}2
]

, (13.7.26)

where x denotes the coordinate of a point on the string, p(x) the momentum den-

sity of the string, u(x) the transverse (or longitudinal) displacement of the string

at x, ρ the uniform mass density of the string, and τ the uniform elastic constant

in the string.

(b) To find the normal modes of vibration in classical mechanics, take the Fourier

transform with box normalization with the string of length L,

p(x) =
1√
L

∑

k

pke
ikx; (13.7.27)

pk =
1√
L

∫
dxp(x)e−ikx. (13.7.28)
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The Fourier transform of u(x) is defined similarly. Show that the Hamiltonian is

given in terms of the normal modes as

H =
∑

k

[
pkp−k

2ρ
+

τk2

2
uku−k

]
. (13.7.29)

(c) To quantize the Hamiltonian, we note that x is just a marker for the dynamic vari-

ables u(x) and p(x). Thus, the commutation relation is for the material particle at

x,

[u(x), p(x′)] = ih̄δ(x − x′). (13.7.30)

Define the normal mode frequency by ωk = s|k|, where s =
√

τ/ρ is the sound

velocity, and, by analogy with the quantization of the harmonic oscillator, the

operators,

ak =

√
ρωk

2h̄
uk + i

√
1

2h̄ρωk

pk. (13.7.31)

Show that the Hermitian conjugate of ak is given by

a†
k =

√
ρωk

2h̄
u−k − i

√
1

2h̄ρωk

p−k, (13.7.32)

and

[ak, a
†
k′ ] = δk,k′ . (13.7.33)

(d) Show that

H =
∑

k

h̄ωk

(
a†

kak +
1

2

)
. (13.7.34)

Thus, a†
k creates a “phonon” of wave-vector k with energy h̄ωk.

(e) Find the energy eigenstates and eigenvalues.

17. The phonon propagator. For the elastic string, the many-phonon Hamiltonian is given

in the last problem. For the boson propagator, the definition is the same as Eq. (13.7.13)

except that the angular brackets denote the expectation value with respect to an energy



664 CHAPTER 13. INTRODUCTORY MANY-BODY PHYSICS

eigenstate with phonon distribution {nk} and that in the time-ordering, Eq. (13.7.15)

there is no change of sign when the boson operators are exchanged,

T{u(r, t)u†(r′, t′)} =

{
u(r, t)u†(r′, t′) if t > t′;
u†(r′, t′)u(r, t) if t < t′.

(13.7.35)

(a) Find the Fourier transform of the propagator G(k, ω).

(b) When the elastic string is subjected to a weak perturbation,

H1 = −Fu0(e
ikx−iωt + e−ikx+iωt), (13.7.36)

by evaluating the linear response function (see Chapter 10), find the Fourier trans-

form u(k, ω) of the first order displacement u(x, t) caused by the driving force.

(c) Evaluate the last part if the system is in equilibrium at temperature T .

18. The Cooper Pair [5].

(a) Show that, for the Hamiltonian given by Eq. (13.6.1), the state of a pair of fermions

added to the Fermi sea,
∑

k αkc
†
k↑c

†
−k↓|Ψ0〉 with scalar coefficients αk, satisfies the

equation of the relative motion,

2εkαk +
∑

k′

V (k,k′)αk′ = Eαk, (13.7.37)

where the pair energy E is measured from the ground state energy.

(b) Hence, show that the energy is, for the density of states at the Fermi level N(0),

E = −2De−2/N(0)V . (13.7.38)

19. Normal state excitations. In analogy with the bogoliubons, the one-particle excita-

tions of the normal Fermi sea may be expressed by letting the gap parameter tending to

zero.

(a) Show that the BCS state in Eq. (13.6.25) reduces to the Fermi sea.

(b) Find the quasi-particle and quasi-hole operators for the excitation out of the Fermi

sea.

(c) Sketch the one-particle excitation versus the wave vector through kF .

20. The BCS state. Derive Eqs. (13.6.24), (13.6.25), (13.6.26), (13.6.29), and (13.6.30).
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13.8 Source Material and Further Reading

§13.1 There is a large number of eminently readable books in the areas of manybody physics,

e.g. [1, 13, 15], field theory, e.g. [22, 18, 28], and superconductivity, e.g. [21, 24].

§13.2 Second quantization is the conversion of the many-particle state to a field representa-

tion, and is, therefore, central to both many-body physics [13] and field theory [22].

§13.5 There is a great deal of literature on the density functional theory. We record here for

further study the original papers on the general density functional theory [8, 10, 23, 12]

and three monographs [16, 26, 6]. A somewhat dated review of the applications was

given for a non-expert audience [20].

§13.6 The famous paper on the theory of superconductivity [2] can still be read today for

the depth and breadth of the physics covered. Fröhlich’s theory [7] predated BCS and

had many of the same form but is for the pairing of the particle-hole channel. The

quasiparticle theory given above follows the treatment by Bogoliubov[3] and Valatin

[27]. Among the many excellent textbooks on superconductivity, two classics are [21,

24].
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