Galileo \& the Telescope-Sept 23

- Announcements
- Test 1 on Wed. See announcements on next slide.
- Outline
- Newton derives the law of gravity
- Galileo makes a telescope and makes 5 discoveries.
- A model of discovery enabled by a new instrument

Galileo by Tintoretto
http://galileo.rice.edu/images/people/galileo/g_tintoretto.gif

Test 1

- Test 1, Wed, $28^{\text {th }}$
- Low stakes. To calibrate your efforts.
- Test 1 counts for 5\% of grade;Tests 2 \& 3 each count for 14%.
- Practice Test (test from 2010) is on angel.
- Link is on Syllabus on angel
- Missouri Club
- Tues, 27th, 7:40-8:40, BPS1420
- Common cheat sheet
- Send me formulas for cheat sheet by 10pm on 27th.

Do all objects fall the same amount?

- Galileo found out experimentally.
- Drop a lead ball and a wooden ball at the same instant.
- Lead and wooden balls hit ground at the same time.

1. Is the acceleration greater for the heavier ball?
A. Y
B. N

- Interpret using Newton's second law
- Force of gravity $=$ mass \times acceleration

2. Is the force of gravity is proportional to mass?
A. Y
B. N

- The force of gravity has this mathematical form M1 M2 (some unknown dependence on distance)

Newton discovers the law of gravity

- Newton was sitting under an apple tree and looking at the moon. An apple falls on his head. Newton realizes the moon and the apple fall for the same reason.
- The moon falls 1.4 mm in 1 second
- In a second, an apple falls 5 m , which is 3600 times greater.
- Moon is 60 times further than apple is from the center of earth.

1. The moon falls less because \qquad
 R1: it is farther away. R2: it is heavier.
A. of R1 only.
B. of R2 only.
C. of both reasons.

Newton discovers the law of gravity

- The moon falls 1.4 mm in 1 second.
- In a second, an apple falls 5 m , which is 3600 times greater.
- The moon falls less because it is farther away
- Moon is 60 times further than apple is from the center of earth.
- The acceleration of gravity of earth on moon is 3600 times weaker than aogoeo apple.

Moon Therefore force of gravity depends on 1/distance ${ }^{2}$.

$$
F=G M m / d^{2}
$$

Galileo \& the Telescope

- Galileo makes a telescope in 1609
- Galileo discovers
- Moons of Jupiter
- Mountains on the moon
- New stars
- Milky Way has many stars
- Phases of Venus
- Disproves Ptolemy's earthcentered model
- A model of discovery enabled by a new instrument
- What cannot be seen cannot be discovered
- Many discoveries were made soon after a new technology or instrument was built.

Galileo by Tintoretto
http://galileo.rice.edu/images/people/galileo/g_tintoretto.gif

Galileo's telescope

Wood, paper; length: 1360mm, lens diameter 26 mm http://galileo.imss.firenze.it

Sidereal Messenger

Unfolding great and many wonderful sights and displaying to the gaze of everyone, especially philosophers and astronomers, the things that were observed by Galileo Galilei, Florentine patrician and public mathematician of the University of

Padua, with the help of a spyglass lately devised by him, about the face of the moon, countless fixed stars, the Milky Way, nebulous stars, but especially about the four planets flying around the star of Jupiter at unequal intervals and periods with wonderful swiftness; which unknown by anyone until this day, the first author detected recently and decided to name Midicean Stars.

Venice 1610
-trans A van Helden, Siderius Nuncius, U Chicago, 1989

SIDEREVS NVNCIVS
MAGNA, LONGEQVE ADMIRABILIA Spectacula pandens, fufpiciendaqupe proponcns vnicuique, prafertim verô
GBLOSOPHIS, atǵ, ASTRONOMIS, quea
GALILEO GALILEO
PATRITIO FLORENTINO Patauini Gymnafij Publico Mathematico PERSPICILLI

WMERIS, LACTEO CIRCVLO, STELLIS NEBVLOSLS
QVATVVOR Apprime Per in ANETIS
Circa IOVIS Stellam difparibus interuallis, atcue periodis,
Circa IO V IS Stellam difparibus interualis, ateque periodis, celcri-
tate mirabili circumuolutiss quos, nemini in hanc vique

MEDICEA SIDERA

Mountains on the Moon

- Imperfections on a heavenly object

Countless stars (Pleiades)

Galilean moons of Jupiter

- This was a demonstration that

Galileo's journal
objects orbit something other than the earth.

1. On 7 Jan 1610, what unusual hint did Galileo uncover about these "stars"?
A. They were very bright.
B. They were nearly on a line.
http://galileo.rice.edu/images/things/journal jup1.gif

Jan 7

Accordingly, on the seventh day of January of the present year 1610,76 at the first hour of the night, when I inspected the celestial constellations through a spyglass, Jupiter presented himsalf. And since I had prepared for myself a superilative instrument, I saw (which earlier had not happened because of the weakness of the other instruments) 77 that three little stars were positioned near himsmall but yet very bright. Although I believed them to be among the number of fixed stars, they nevertheless intrigued me because they appeared to be arranged exactly along a straight line and parallel to the ecliptic, and to be brighter than others of equal size. And their disposition among themselves and with respect to Jupiter was as follows: 78

East * * West
That is, two stars were near him on the east and one on the west; the more eastern one and the western one appeared a bit larger than the remaining one. I was not in the least concerned with their distances from Jupiter, for, as we said above, at first I believed them to be fixed stars. But when, on the eighth, I returned to the same
to be fixed stars. But when, on the eighth, I returned to the same observation, guided by I know not what fate, 79 I found a very different arrangement. For all three little stars were to the west of Jupiter and closer to each other than the previous night, and separated by equal intervals, as shown in the adjoining sketch. ${ }^{80}$ Even though at this point I had by no means turned my thought to the mutual motions of these stars, yet I was aroused by the question

East

, West
of how Jupiter could be to the east of all the said fixed starl when the day before he had been to the west of two of them. I was afraid, therefore, that perhaps, contrary to the astronomical comput~tions, his motion was direct and that, by his proper motion, h'e had bypassed those stars. ${ }^{81}$ For this reason I waited eagenly for thelnext night. But I was disappointed in my hope, for the sky was everywhere covered with clouds.

Then, on the tenth, the stars appeared in this position with regard to Jupiter. Only two stars were near him, both to the east. The

East * $\boldsymbol{*}$ West

- How does the evidence disprove that they are stars?
- Assume the three objects seen near Jupiter on 7 Jan 1610 were real stars. Draw what Galileo would have seen on Jan $8^{\text {th }}$.

3. Spacing between the stars is \qquad as on the 7th.
A. the same
B. different
4. Distance from easternmost star to Jupiter is \qquad .
A. precisely the same
B. different.

