Newton on K's 3rd Law, To Frame the World—30 Sept

- Announcements
 - Test 1 will be returned on Wed.
 - Homework 4 is due on 7th.
 - Observatory open house
 - Fri & Sat 9:00-11:00, weather permitting
- Outline
 - Newton amends Kepler's 3rd Law (left over from last week)
 - Kepler found orbit of Mars relative to earth's orbit.
 - Goal was to measure the absolute distance (in miles or km) of the solar system
 - Cassini & Richer 1672

Giovanni Domenico Cassini, (1625 - 1712) engraving by N. Dupuis www.sil.si.edu/digitalcollections/hst/scientific-identitv/fullsize/SIL14-C1-

Newton's Laws imply Kepler's 3rd Law $a = G M/R^2$ $a = 4\pi^2 \dot{R} / P^2$ • Finally $P^2 = (4\pi^2/G) R^3/M$ $4\pi^2/G = 2x10^{30} \text{ kg yr}^2/\text{AU}^3 = 1 \text{ M}_{sup} \text{ yr}^2/\text{AU}^3$ If P is in years, R in AU, and M is in M_{sun}, then $P^{2} = R^{3}/M$ 1. In what way is Newton's form of Kepler's 3rd Law different from Kepler's? The two are the same. Α. В. Newton says it depends on the mass of the star. C. N found what it is in human-based units. D More than one of the other answers is correct.

Kepler's 3rd Law, according to Newton

• Phy 321 derivation

 $P^2 = (4\pi^2/G) R^3/(M+m)$

• The mass is the mass of the star and planet.

D

 If period is measured in years, the semi-major axis is measured in AU, and mass of star is measured in M_{sun}, and mass of planet is negligible,

$$r^2 = \frac{\pi}{M_{star}}$$

- Kepler's 3rd Law is the special case of a planet with negligible mass in orbit around a star with the mass of the sun.
- 1. A planet orbits a star with the same orbit as the earth. Its period is 2 years. The mass of the star is $_$ M_{sun}
 - Á. 2
 - B. 4
 - C. ½
 - D. 1/4

Cassini & Richer 1672

- Angle=baseline/distance
- What baseline should C&R use to measure distance to Mars?
- Cayenne-Paris baseline is 7000km.
 - Angle=baseline/distance=7 000km/60,000,000km
 = 120µrad
 - Shift is 25 times width of a star seen with modern telescope.

