

#### Model of Stars—5 Oct

- Outline
  - Test 1
    - Missouri Club on Fri
  - Questions on parallax
  - Hot-plate model of a star
  - Thermal radiation
  - Hertzsprung-Russell diagram
  - Missouri Club for Hwk 4



## Questions on parallax

- 1. The parallactic angle a changes over the year because
  - A. the distance to the star changes.
  - B. the length of the baseline changes.
  - C. both A and B are important.
- 2. You want to measure the distance of a star at right ascension Ohr. When are two times of the year between which the change in the parallactic angle is the greatest?
  - A. March & June
  - B. March & Sept
  - C. June & Sept
  - D. June & Dec



## **Knowing distance**

- 1. You do not know the distance to a binary star system. S1: You can measure the period. S2: You can measure the distance between the two stars.
  - A. TT
  - B. TF
  - C. FT
  - D. FF
- 2. Without knowing the distance, can you measure the mass of a binary star system? (K's  $3^{rd}$  law  $P^2=R^3/M$ )
  - A. Yes
  - B. No

# **Knowing distance**

- 1. You do not know the distance to a binary star system. S1: You can measure the period. S2: You can measure the distance between the two stars.
  - A. T1
  - B. TF
  - C. FT
  - D. FF
- 2. Without knowing the, can you measure the mass of a binary star system? (K's  $3^{rd}$  law  $P^2=R^3/M$ )
  - A. Yes
  - B. No
- Measuring distances enabled astronomers to study the physics of stars.

#### Model of a star

- How much light do I receive from a star?
- What parameters determine the amount of light from a star?



The sun in x-rays

# The Hot-plate Model of a Star

- The surface of a star is made of tiles of hot plates.
- How does the energy from the hot-plate get to my hand?
  - Key observation: I can hold my hand much closer to the hot plate when it faces to the side, rather than up.



http://www.acemart.com/graphics/0000001/products/WELLh70\_01.jpg

# The Hot-plate Model of a Star

- How does the energy from the hot-plate get to my hand?
  - Key observation: I can hold my hand much closer to the hot plate when it faces to the side, rather than up.
- Energy moves from the hot plate to my hand by
  - movement of hot air
  - by radiation (mostly infrared light)
- Energy leaves stars primarily by radiation.
  - For the sun, the radiation is mostly ultraviolet light, visible light and infrared light.



http://www.acemart.com/graphics/0000001/products/WELLh70\_01.jpg

### The Hot-plate Model of a Star

- The surface of a star is made of tiles of hot plates.
- We concentrate on the radiation produced by the hot plate.
- How can you make hot plates produce more energy per second? (The same question applies to a star: What (is) are way(s)s to make a star brighter or more luminous?) Make hot plates bigger. Make plates hotter.
  - A. Make the plates hotter only.
  - B. Make the plates bigger only.
  - C. Make plates hotter & bigger.
- The luminosity of a star (the energy produced every second) depends on temperature and size.



http://www.acemart.com/graphics/0000001/products/WELLh70\_01.

### The Hot-plate Model of a Star

- The luminosity of a star (the energy produced every second) depends on temperature and size.
- What can I do to make the same hot-plate at the same setting burn my hand and not burn my hand? (Without modifying the sun, what can I do to make the sun brighter or fainter?)
  - A. Move my hand closer or farther.
  - B. It is not possible.
- The flux of a star (the energy received at the earth every second) depends on temperature, size, and distance to the star.



http://www.acemart.com/graphics/0000001/products/WELLh70\_01.jpg

## Thermal radiation (Blackbody Radiation)

- Any object that absorbs light also emits light.
- Do people emit light?
  - People emit light in the "thermal infrared" part of the spectrum.
  - Your eyes cannot see infrared radiation. 8000<  $\lambda{<}12000 nm$
  - You can see visible light
    - Blue 440nm
    - Green 550nm
    - Red 620nm
- A perfect absorber (perfectly black) emits a characteristic spectrum of light. (Called thermal or black-body radiation.)
  - Intensity depends only on
    - Temperature
    - Area
- A non-perfect absorber (grey body) with emissivity  $\epsilon$  absorbs a fraction  $\epsilon$  and reflects a fraction (1- $\epsilon$ ).
  - Intensity is  $\epsilon$  that of thermal radiation.



Picture taken with an infrared camera ornitorinko.org:8080/.../portrait-bits.jpg