Hertzsprung-Russell Diagram—7 Oct

• **Outline**
 – Thermal radiation
 • Wien’s Law
 • Stefan-Boltzmann Law
 – Hertzsprung-Russell diagram
 • There are 3 types of stars: main-sequence or dwarfs, giants, white dwarfs
 – Missouri Club for Test 1
Infrared camera—Seeing with infrared eyes

• A perfect absorber (perfectly black) emits a characteristic spectrum of light. (Called thermal or black-body radiation.)
 – Intensity depends only on
 • Temperature
 • Area

• Thermal infrared
 – Wavelength is 8,000-12,000 nm
 – An object with a temperature of 300K emits most of its light in the thermal infrared.
 – Does infrared light show the same thing as visible light?

• Q Which is the hottest part of the man’s face?
 A. His hair.
 B. His forehead.
 C. His eyeglasses.
 D. His moustache.
Thermal Radiation

- Spectrum (intensity vs. wavelength) of thermal radiation.
 - Hotter objects are brighter at all wavelengths.
- Wien’s Law
 \[\lambda_{\text{peak}} T = 2.9 \text{mm K} \]
 - Wavelength changes inversely with temperature
 - For the sun, T=5700K.
 \[\lambda_{\text{peak}} = \frac{2.9 \text{mm K}}{5700 \text{K}} = 0.0005 \text{mm} = 500 \text{nm} \]
 - For a person, T=273+37=310K.
 \[\lambda_{\text{peak}} = \frac{2.9 \text{mm K}}{310 \text{K}} = 0.01 \text{mm} = 10 \mu\text{m} \]
- Stefan-Boltzmann Law
 - Energy emitted per second depends on area A (or radius R for a sphere) and temperature T
 \[L = AT^4 \]
 \[L = R^2 T^4 \]
Luminosity & Flux (apparent brightness) of Stars

- Luminosity is amount of energy per second (Watt) produced by the star.
 - Intrinsic to the star.
 - With constants suppressed, \(L = R^2 T^4 \)
- Flux is energy per second received by a detector on earth (Watt/m²).
 - Depends on distance of star \(F = L/D^2 \)
 - At greater distances from star, light is spread over larger area. Flux is lower.
• The color of my cat is a property of my cat. It does not change with distance. I see the same color whether my cat is 1’ or 10’ from me.

1. S1: The flux of a star does not change with distance.
 S2: The luminosity does not change with distance.
 A. TT
 B. TF
 C. FT
 D. FF

2. ___ is the quantity that I measure directly.
 A. Flux
 B. Luminosity
Annie Jump Cannon: Classify stars by spectra

- Classification is very efficient: Draper catalog has 250,000 stars.
- Spectral class was later found to be related to temperature.

O be a fine girl kiss me.
• Prof. Pickering’s Team in 1913, from Barbara L. Welther, 1982, Isis 73, 94.
• AJC
 – BA, Wellesley, 1884
 – Pickering’s assistant, 1896
 – Henry Draper catalog of stars, 1918-1924
 – Astronomer 1938
Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
 - Hotter stars are on the left.
 - More luminous stars are on the top.
 - Stars exist only with certain combinations of luminosity and temperature.

Ejnar Hertzsprung
1873-1967 (Danish)

Arthur Stanley Eddington
1882-1944 (English)

Astrophysics and twentieth-century astronomy to 1950,
O Gingerich, ed., Cambridge, 1984
Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity.
- Stefan-Boltzmann Law: $L = AT^4$

1. A star is moved 10 times farther away. In the H-R diagram, it moves
 - A. up
 - B. down
 - C. left
 - D. right
 - E. not at all

Astrophysics and twentieth-century astronomy to 1950, O Gingerich, ed., Cambridge, 1984
Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$

1. A star is getting hotter and its size does not change. In the H-R diagram, it moves
 A. up & left
 B. up & right
 C. up-down
 D. left-right
 E. not at all

Astrophysics and twentieth-century astronomy to 1950, O Gingerich, ed., Cambridge, 1984
Hertzsprung-Russell diagram

• H-R Diagram is plot of temperature & luminosity
• Stefan-Boltzmann Law: $L = AT^4$

1. Can two stars of the same spectral class have different luminosities?
 A. No. No such cases exist on the H-R diagram.
 B. Yes, temperatures differ
 C. Yes, sizes differ
 D. Yes, both size & temperatures differ.

Astrophysics and twentieth-century astronomy to 1950, O Gingerich, ed., Cambridge, 1984
Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$
- H-R diagram reveals stars cannot have any combination of size and temperature. There are three types of stars.
 - Dwarfs have differing temperatures and approximately the same size. Dwarfs are most common.
 - Giants are large.
 - White dwarfs are small.
Discovery of White Dwarfs—8 Oct

- Homework 4 is due on Mon.
- Hertzsprung-Russell diagrams
- Magnitude, apparent & absolute
- Adams’ discovery

Sirius A & B
http://chandra.harvard.edu/photo/2000/0065/0065_optical.jpg