Hertzsprung-Russell Diagram, Flux, Luminosity, Magnitude—10 Oct

- **Outline**
 - Review of 7 Oct
 - Thermal radiation
 - Wien's Law
 - Stefan-Boltzmann Law
 - How to measure temperature of stars. AJ Cannon's method of classifying spectra.
 - Hertzsprung-Russell diagram
 - There are 3 types of stars: main-sequence or dwarfs, giants, white dwarfs
 - New material
 - H-R diagram of star clusters
 - Flux, luminosity, magnitude, absolute magnitude

Thermal Radiation

- Spectrum (intensity vs. wavelength) of thermal radiation.
 - Hotter objects are brighter at all wavelengths.
- Wien's Law

$$\lambda_{\text{peak}}T = 2.9 \text{mm K}$$

Wavelength changes inversely with temperature

• For the sun, T=5700K.

$$\lambda_{\rm peak} = \frac{2.9 {\rm mm~K}}{5700 {\rm K}} = 0.0005 {\rm mm} = 500 {\rm nm}$$
• For a person, T=273+37=310K.

$$\lambda_{\text{peak}} = \frac{2.9 \text{mm K}}{310 \text{K}} = 0.01 \text{mm} = 10 \mu\text{m}$$

Stefan-Boltzmann Law

Energy emitted per second depends on area A (or radius R for a sphere) and temperature T

$$L = AT^4$$

$$L=R^2T^4$$

Ast 207 F2011

Luminosity & Flux (apparent brightness)

of Stars

- Luminosity is amount of energy per second (Watt) produced by the star.
 - Intrinsic to the star.
 - With constants suppressed, $L = R^2 T^4$
- Flux is energy per second received by a detector on earth (Watt/m²).
 - Depends on distance of star $F = L/D^2$
 - At greater distances from star, light is spread over larger area. Flux is lower.

Is it flux or luminosity?

- The color of my cat is a property of my cat. It does not change with distance. I see the same color whether my cat is 1' or 10' from me.
- 1. S1: The flux of a star does not change with distance. S2: The luminosity does not change with distance.
 - A. TT
 - B. TF
 - C. FT
 - D. FF
- 2. __ is the quantity that I measure directly.
 - A. Flux
 - B. Luminosity

Applying the hot-plate model to stars

- Flux=Luminosity/distance²
- Luminosity=R²T⁴
- It is around 1900.
 - The distances to some stars are known. They were measured by the method of ____. That means the luminosities are known.
 - To figure out the hot-plate model of a star, a measurement of is needed.
- Annie Jump Cannon figure out a way to measure it.

- Prof. Pickering's Team in 1913, from Barbara L. Welther, 1982, Isis 73, 94.
- AJC
 - BA, Wellesley, 1884
 - Pickering's assistant, 1896
 - Henry Draper catalog of stars, 1918-1924
 - Astronomer 1938

Hertzsprung-Russell diagram H-R Diagram is plot of

- H-R Diagram is plot of temperature & luminosity
 - Hotter stars are on left.
 - More luminous stars are on the top.
 - Stars exist only with certain combinations of luminosity and temperature.

Ejnar Hertzsprung 1873-1967 (Danish)

Henry Norris Russell 1877-1957 (American)

Astrophysics and twentieth-century astronomy to 1950, O Gingerich, ed., Cambridge, 1984

Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$
- A star is gets hotter and its size does not change. In the H-R diagram, it moves
 - A. up & left
 - B. up & right
 - C. up-down
 - D. left-right
 - E. not at all

Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$
- Can two stars of the same spectral class have different luminosities?
 - A. No. No such cases exist on the H-R diagram.
 - B. Yes, temperatures differ
 - C. Yes, sizes differ
 - D. Yes, both size & temperatures differ.

Hertzsprung-Russell diagram

- H-R Diagram is plot of temperature & luminosity
- Stefan-Boltzmann Law: $L = AT^4$
- H-R diagram reveals stars cannot have any combination of size and temperature. There are three types of stars.
- Dwarfs have differing temperatures and approximately the same size.
 - Dwarfs are most common.
 - Also called main-sequence stars.
- Giants are large.
- White dwarfs are small.

