Discovery of White Dwarfs—12 Oct

• Outline

- Example Hertzsprung-Russell diagrams
- How are giants and main-sequence stars related?
- Magnitude, apparent & absolute
- Adams' discovery of first white dwarf

Sirius A & B http://chandra.harvard.edu/photo/200 0/0065/0065_optical.jpg

Ast 207 F2011

M15

- Globular cluster M15
 - All the stars were born at the same time.
 - Bright orange stars are giants.
 - Blue stars are dwarfs.

NASA: HST

H-R Diagram of a star cluster M15

- Observations of a globular cluster M15 show
 - Main-sequence or dwarf stars
 - Giants
 - Horizontal-branch stars
 - White dwarfs are too faint for these observations.
- Giants are dying stars.
 - A star lives a long time as a dwarf. It is on the main sequence.
 - When it runs out of fuel, it becomes a giant and subsequently "traces out the giant branch."
 - At its brightest, a giant becomes 100 times as bright as it was as a dwarf.

H-R diagram of two star clusters

- What to ignore
- What is different about the two H-R diagrams?
- Where is the main sequence? Giants?
- Interpretation
 - Bluer stars live a shorter time.
 - As a star dies, it becomes a giant.
 - M67 is younger.
- 1. In M67, which star is in the process of dying?
- 2. In M67, which star has the longest lifetime?

http://en.wikipedia.org/wiki/Hertzsprung-Russell diagram

Luminosity and flux

- Luminosity = amount of energy per second (Watt) produced by the star L=R²T⁴
- Flux = energy per second received by a detector on earth (Watt/m²) $F=L/D^2$
- 1. As viewed from Earth, which is the faintest star?
 - A. Sun
 - B. Vega
 - C. Sirius

Star	Apparent	Flux		Absolute	Lummosity		Distance
	mag	[W/m ²]	[f _{Vega}]	mag	[W]	\mathcal{L}_{sun}	[pc]
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10^{26}	1	5×10 ⁻⁶
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10^{28}	54	8
Sirius	-1.45	1.1×10 ⁻⁷	3.9	1.4	9.0×10^{27}	23	2.7

Apparent & Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux
- If the apparent mag <u>changes</u> by -2.5, the flux is brighter by a <u>factor</u> of 10.
 - If the apparent mag <u>changes</u> by +2.5, the flux is fainter by a <u>factor</u> of 10.
- 1. The apparent magnitude of a star is +2.5. Its flux is
 - A. $2.7 \times 10^{-6} \text{W/m}^2$.
 - B. $2.7 \times 10^{-7} \text{W/m}^2$.
 - C. $2.7 \times 10^{-8} \text{W/m}^2$.
 - D. $2.7 \times 10^{-9} \text{W/m}^2$.
 - E. $2.7 \times 10^{-10} \text{W/m}^2$.
- 2. The apparent magnitude of a star is +5. Its flux is

Star	Apparent mag	Flux		Absolute	Luminosity		Distance
		[W/m ²]	[f _{Vega}]	mag	[W]	[L _{sun}]	[pc]
Sun	-26.7	1400	5.2×10 ¹⁰	4.8	3.9×10^{26}	1	5×10 ⁻⁶
Vega	0.0	2.7×10 ⁻⁸	1	0.5	2.1×10 ²⁸	54	8
Sirius	-1.45	1.1×10 ⁻⁷	3.9	1.4	9.0×10 ²⁷	23	2.7

Apparent & Absolute Magnitude

- Apparent mag is a logarithmetic expression of flux
- If the apparent mag <u>changes</u> by -2.5, the flux is brighter by a <u>factor</u> of 10.
- Fluxes and magnitudes of two stars A and B

$$\frac{f_{\rm B}}{f_{\rm A}} = 10^{-(m_{\rm B} - m_{\rm A})/2.5}$$

$$m_{\rm B} - m_{\rm A} = -2.5 \log_{10} \frac{f_{\rm B}}{f_{\rm A}}$$

- Try it
 - If m_B is -2.5 more than m_A , m_B - m_A = -2.5, and $f_B/f_A = 10^{-(-2.5)/2.5} = 10^1 = 10$.
 - If B is brighter by a factor of 10, $f_B/f_A=10$, and $m_B-m_A=-2.5 \log(10)=-2.5$.

• We are Walter Adams of the Mt. Wilson Observatory in 1914. We are studying the double star Sirius A and B. (Sirius A & B orbit each other.) • Sirius B is much fainter than Sirius A.

- 1. Sirius B may be faint for two reasons. It may be small or it may be
 - A. farther away
 - B. closer
 - C. cooler
 - D. hotter

- 1. Sirius B may be faint for two reasons. It may be small or it may be
 - A. farther away
 - B. closer
 - C. cooler
 - D. hotter
- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.

