Fusion powers the stars—14 Oct

- Big questions
 - Does the sun have a finite life or does it last forever?
 - What powers the sun?
 - Where does carbon come from?
 - How long does the sun live?
 - What happens to the sun when it dies?
- Outine
 - Finish "Adams discovers a white dwarf"
 - Fusion
 - 4H→⁴He

Ast 207 F2011

Sirius A and Sirius B

- Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.
 - $-L=R^2T^4$
- How much smaller is Sirius B?
- Apparent mag of Sirius A is -1.5
- Apparent mag of Sirius B is 8.7

- 1. The mag of Sirius B is approximately __ steps of 2.5 fainter than that of Sirius A.
 - A. 4
 - B. 5
 - C. 6
 - D. 10
- 2. The flux of Sirius B is approximately _ fainter.
 - A. a factor 10
 - B. a factor of 100
 - C. a factor of 1000
 - D. a factor of 10,000.

AST207 F2010 1

Discovery of white dwarfs

 Adams found that Sirius A and B have about the same color. Therefore Sirius B is smaller.

 $L = R^2T^4$

- 1. The mag of Sirius B is 4 steps of 2.5 fainter than that of Sirius B.
- 2. The flux of Sirius B is approximately a factor of 10,000 fainter.
- The radius of Sirius B is 1/100 that of Sirius A.
 - Sirius B is about the size of the Earth.
- Tiny stars are called white dwarfs.
- Main-sequence stars and white dwarfs use different laws of physics.

http://chandra.harvard.edu/photo/2000/0065/0065 optical.jpg

Adams discovered white dwarfs

- 1. We say Adams discovered white dwarfs. What did he actually do?
 - A. Adams was the first person to photograph Sirius B
 - B. Adams figured out that Sirius B is very small.
 - C. Adams figured out that Sirius B is very faint.

Energy production in the sun

- Big questions
 - What powers the sun?
 - Where does carbon come from?
 - How long does the sun live?
 - What happens to the sun when it dies?
- Lifetime of the sun
 - Chemical reactions
 - Gravitational energy
 - Nuclear fusion
- Fusion

19th Century "Energy Crisis"

- Luminosity of sun L=4×10²⁶Watt
- Mass m=2×10³⁰kg
- How long will the sun last if the energy is produced by burning coal? C+O₂→CO₂
 - Life time = $m \times (E/m)/L$
 - E/m=9MJ/kg
 - 1500 years
- · Earth is much older than that.

Extract Energy from Gravity

- Luminosity of sun: L=4×10²⁶Watt
- Mass $m=2\times10^{30}$ kg
- How long will the sun last if the energy is produced by the sun contracting?
- If material falls from R_{sun} to $0.9R_{sun}$, Energy = ½ m v² = m g h = m (GM_{sun}/R_{sun}^2)($0.1R_{sun}$)
 - Life time = $m \times (E/m)/L$
 - 1.6 Million years
- Kelvin's calculation includes material falling not just on surface. Got 100 Myr.
 - Kelvin thought earth could be this old, but later in 19th century, age of earth was shown to be much larger.

William Thomson Lord Kelvin 1824-1907 www-history.mcs.st-andrews.ac.uk/ history/PictDisplay/Thomson.html /

$E = mc^2$

- Crisis: No solution with physics of 19th century.
- Einstein's new theory (1906)
 - Energy can change into mass, and mass can change into energy.

$$E = m c^2.$$

- Energy = mass \times (speed of light)².
- Changing a little mass produces a lot of energy. Compare with kinetic energy

$$KE = \frac{1}{2} m v^2$$

- Speed of light c = 300,000 km/s

- Air in blast furnace moves at 0.2 km/s
$$\frac{KE}{E} = \frac{1}{2} \left(\frac{v}{c} \right) = 2 \times 10^{-13}$$

AST207 F2010

E=mc²

- Chemical reaction $C+O_2 \rightarrow CO_2$
 - E=m c²/100,000,000,000. One part in 100 billion of mass disappears and changes into energy.
- Sun contracts by 10%
 - E=m c²/1,000,000. One part in a million of mass disappears and changes into energy.
- H fuses to produce He
 - E=m c²/140. A part in 140 of the mass disappears and changes into energy.

Nuclear fusion

- In a nuclear reaction, converting a significant fraction of the mass to energy is possible.
- Hans Bethe figured out the nuclear physics of how this happens.
- 4 ${}^{1}\text{H} \rightarrow {}^{4}\text{He}$ + neutrinos +2e++ energy
 - 4 hydrogen nuclei fuse
 - One helium nucleus is produced
- Which is heavier? A box of hydrogen and a box of helium, neutrinos, and positrons made from the hydrogen?
 - A. Box containing H
 - B. Box containing the products: He, neutrinos, and positrons
 - C. The two boxes have the same mass.

Hans Bethe 1906-2005

Nuclear fusion

- In a nuclear reaction, converting a significant fraction of the mass to energy is possible.
- 4 $^{1}\text{H} \rightarrow ^{4}\text{He}$ + neutrinos +2e++ energy
 - 4 hydrogen nuclei fuse
 - One helium nucleus is produced
- 4 ¹H weighs 0.7% more than ⁴He + neutrinos +2e⁺.
 - Part of the mass has been converted into energy.
 - Amount of energy is E=0.007mc². Most of mass remains.
- Life time = $m \times (E/m)/L$
 - $m \times (0.007 mc^2/m)/L$
 - 100Byr

In reality sun uses 14% bf fuel. Lifetime is 10Byr

Lighter by 0.7%

Fusion chains in mainsequence stars

- sequence starsTwo paths for fusing hydrogen into helium
- Carbon-nitrogen-oxygen cycle (important in more massive stars)
- Proton-proton chain (main process in sun)

Hans Bethe 1906-2005

Proton-proton chain

 Step 1: Two protons fuse to produce a deuterium nucleus (²H), a positive electron, and a neutrino.

 $p+p\rightarrow d+e^++v$

- Deuterium is an isotope of H with one neutron.
- A neutrino is almost massless, not charged, and interacts very weakly.
- Did the number of nucleons change? Charge?
 - A. YY
 - B. YN
 - C. NY
 - D. NN

Proton-proton chain

• Step 1: Two protons fuse to produce a deuterium nucleus (²H), a positive electron, and a neutrino.

 $p+p\rightarrow d+e^++v$

- Deuterium is an isotope of H with one neutron.
- A neutrino is almost massless, not charged, and interacts very weakly.
- 1. Did the number of nucleons change? Charge?
- Nucleons are conserved (except in some exotic interactions in the early universe).
- Charge is absolutely conserved.

Proton-proton chain

- Step 1: $p + p \rightarrow {}^{2}H + e^{+} + \upsilon$
- In the center of the sun, a proton survives collisions without reacting for 10Byr.
 - Electrical repulsion between protons (Coulomb repulsion; Coulomb barrier)
 - Requires fast speed or high temperature to overcome repulsion.
 - Neutrino indicates a "weak" reaction, which is weak.
- Step 2: $p+^2H \rightarrow ^3He+\gamma$ (Takes 6s)
 - γ is a photon, a unit of light. This photon has lots of energy.
- 1. In step 2, did any protons change into neutrons? Is this a weak interaction?
 - A. YY. B. YN. C. NY. D. NN.

Proton-proton chain

- Step 1: $p+p\rightarrow^2H+e^++v$ (Takes 10Byr)
- Step 2: $p+^2H \rightarrow ^3He+\gamma$ (Takes 6s)
- Step 3: ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + p + X \text{ (Takes 1Myr)}$
- 1. What is X?
 - A. Neutron.
 - B. Electron.
 - C. Neutrino.
 - D. Proton.
 - E. Positron (positive electron).

Proton-proton chain

- Step 1: $p+p\rightarrow^2H+e^++\upsilon$ (Takes 10Byr)
- Step 2: $p+^2H \rightarrow ^3He+\gamma$ (Takes 6s)
- Step 3: ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + p + p \text{ (Takes 1Myr)}$
- Where is the created energy?
 - A positron meets an electron, and the two annihilate.
 - $e^+ + e^- \rightarrow 2\gamma$
 - Light interacts with matter to heat it up.
 - Moving reactants heat the matter.
 - Neutrinos escape from the sun carrying away energy.