Life of the Sun—19 Oct

- Announcements on Test 2 & Hwk 6
- · Public Talk
- Outline
 - Sun will use up the hydrogen in the center in 5Byr
 - Center of sun must shrink to get hotter to balance gravity
 - Sun will become a red giant. Surface expands.
 - Sun will become a planetary nebula
 - Sun will become a white dwarf, made of a degenerate gas
 - Physics of a degenerate gas

Announcements Test 2 is on Wed, 26th New material is Newton through class on 19th Mostly on new material not on first test. Practice test. See link on the syllabus. Missouri Club, Tues, 25th, 7:40-8:40pm, BPS 1420 Send me formulas for cheat sheet by Wed, 26th, 1:00am Hwk 6 Absolute deadline is 3:10pm on Mon, 24th. Ask about homework 6 in class on 24th. Due date is incorrect on Hwk 6.

Public Talk

"The history of the Universe in a nutshell: from the Big Bang to life and the end of time"

John Mather, Nobel Prize winner in physics, 2006

Tonight, 8:00 pm, BPS 1410

The sun's choice

• Sun does a balancing act.

$$\frac{M}{R} = T$$

- Sun must produce energy to replenish the energy radiated away.
- Without burning fuel to keep temperature up, pressure would fall and gravity would win.
 - Core shrinks, gets hotter T=200MK

Triple-alm	
Reaction	Dro Min. Temp.
4 ¹ H → ⁴ He	10 MK
3 ⁴ He → ¹² C	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	800 MK
Ne ➔ O, Mg	1500MK
O ➔ Mg, S	2000MK
Si → Fe peak	3000MK

The sun's choice

- 1. Why does fusion of helium require a higher temperature?
 - A. Helium is heavier
 - B. Helium has 2 protons
 - C. Helium has two neutrons
- With more charge, it takes higher speeds to bring two He nuclei close enough to fuse.
 - Carbon has 6 protons.

Triple-alm	
Reaction	Dro Min. Temp.
4 ¹ H → ⁴ He	10 MK
3 ⁴ He → ¹² C	200 MK
¹² C + ⁴ He → ¹⁶ O, Ne, Na, Mg	800 MK
Ne ➔ O, Mg	1500MK
O ➔ Mg, S	2000MK
Si → Fe peak	3000MK

Other fusion reactions? Sun has one more trick after He is exhausted in core. "Iple-alphaprocMin. · Burn He in a shell Sun is not massive Reaction enough to shrink further and get hotter 4 ¹H **→** ⁴He 10 MK Core is supported by 3 ⁴He → ¹²C 200 MK pressure of degenerate ¹²C + ⁴He **→** ¹⁶O, Ne, Na, 800 MK electrons. • Temperature does not rise Mg to burn anything else. Ne \rightarrow O, Mg 1500MK O ➔ Mg, S 2000MK End of the road: planetary • nebula & white dwarf core Si \rightarrow Fe peak 3000MK

