Hubble's Law—31 Oct

- Outline
 - Intro: What are galaxies?
 - Hubble's Law describes how galaxies move and how the universe expands.
 - Questions on Big Bang
- Objectives: To answer and give evidence for these questions.
 - Was there a Big Bang?
 - Are we at the center of the Big Bang?
 - Why are galaxies moving?
 - How long ago did the Big Bang occur?

Ast207

Realm of the nebulae (galaxies)

- Galaxies are made of billions of stars, gas, dust, and dark matter.
- Our galaxy is the Milky Way.
- Nearest big galaxy is our big sister
 Andromeda, which is 700kpc from us. Sun is 8kpc from center of the Milky Way.

10/31/2011 Ast 207

- 1. Which is bigger, galaxy or star cluster? Galaxy or solar system?
 - A. Galaxy. Solar system.
 - B. Star cluster. Solar system
 - C. Star cluster. Galaxy.
 - D. Galaxy. Galaxy.

10/31/2011 Ast 207

First Hubble Diagram

 V M Slipher, Lowell Observatory, pioneered the measurement of the Doppler velocities of galaxies.

Hubble measured / estimated distances of

Edwin Hubble 1889-1953 in 1924 http://www.sciencephoto.com/images/download_lo_res.html?id=72408010

- galaxies.
- Hubble 1929, Proc. Nat. Acad. Sci. 15, 168
 Summarize Hubble's plot. What is the main
- finding?
 The speed of a galaxy is proportional to its distance. Almost every galaxy is moving

Ast 20 Hubble 1929, Proc. Nat. Acad. Sci. 15, 168

away from us.

How do galaxies move?

- They move according to Hubble's Law.
- We will answer these questions by analyzing the motion of 3 galaxies.
 - Was there a Big Bang?
 - Are we at the center of the Big Bang?
 - Why are galaxies moving?
 - How long ago did the big bang occur?

Ast 207

NGC4881, central galaxy in Coma Cluster

10/31/2011

5

Motion according to Hubble's Law

 Hubble's Law: Velocity v is proportional to distance D

$$v = HD$$

- Demo: Let Coma & Hoag's Galaxy move according to Hubble's Law.
 - Move forward in time. Note relative spacing.
- 1. If Coma moves one meter, how much should Hoag move?
 - a. 1 m
 - b. 3 m
 - c. 1/3 m
 - d. 9 m
 - e. 1/9 m

[Translate Hubble's Law to the demo. Later you will have to translate the demo to the Universe.]

	Speed	Dist
Milky Way	0 km/s	0 Mpc
Coma	6,000 km/s	100Mpc
Hoag's Object	18,000 km/s	300Mpc

What form is the expansion?

Hubble's Law

$$v = HD$$

- 2. Hoag is 3 times as far as Coma. Is this still true in the future? Was this true in the past?
 - a. YY
 - b. YN
 - c. NY
 - d. NN

[Discover a property of H's Law.]

Self similar expansion

• Hubble's Law

v = HD

- 2. Hoag is 3 times as far as Coma. Is this still true in the future? Was this true in the past?
 - a. YY
 - b. YN
 - c. NY
 - d. NN
- Two method: Visual & mathematical.
- The amount that the distance changes is proportional to the distance.
- Motion according to Hubble's Law is self-similar. Relative distances are preserved with this special type of expansion.

Ast 207

Evidence that Big Bang occurred

Hubble's Law

$$v = HD$$

- Demo: Let Coma & Hoag's Galaxy move according to Hubble's
 - Move backward in time.
 - Move backward so that Coma and MW are coincident.
- Where is Hoag's object? What is this event called?
- All three galaxies were close at the same time.
 - Since these three are not unique, we have shown this is true for every galaxy.
 - · Everything was very close at the same instant.
- Hubble's Law ⇒ Universe began in a Big Bang

Is Hubble's Law's valid for Coma?

- 3. If we are astronomers on some planet in Coma, would H's Law apply? (All guesses are OK.)
 - a. Y
 - b. N
- Do the demo with Coma stationary.
- 3. If we are in Coma, would H's Law apply?
 - a. Y
 - b. N
- Hubble's Law applies everywhere.

Ast 207

Value of Hubble's constant implies age of universe

• Write H's law in more familiar form

$$D = V (1/H)$$

This is the same idea as ____.

• 1/H = D/V

= (470Mpc) / 30000km/s

= 15Byr

(1pc=3e13km)

(1yr=3e7s)

Galaxy that moves at 30000km/s is 470Mpc from us

Hubble Diagram 2003

Value of H implies age of universe

Write H's law in more familiar form

$$D = V (1/H)$$

This is the same idea as

distance = speed \times time.

time=15Byr

- Some matter that was very near us soon after the Big Bang was moving at 30,000km/s.
- The age of the universe is 15 Byr.
 - In 15 Byr, that matter has moved 470 Mpc to its present distance (and become part of a galaxy). (Our atoms became part of the solar system and later MSU students.)
- Be aware: V is the current velocity. We assumed matter does not speed up or slow down.

Hubble Diagram 2003