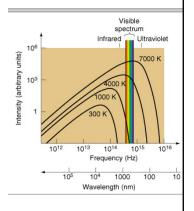
Radiation from the Big Bang—7 Nov

- Four most important discoveries in cosmology
 - Hubble's Law, expansion of universe 1929
 - · Radiation from BB 1965
 - Dark matter 1930s, 1970s
 - Accelerated expansion 1998
- Outline
 - Discovery of cosmic background radiation (today)
 - Did the radiation that Penzias & Wilson discover come from the Big Bang?
 - Objective: To interpret evidence & draw conclusions. What is the evidence?
 - Radiation determines the early history of the universe (Wed)

1965 Discovery of Radiation from the Big Bang

- Arno Penzias & Bob Wilson at Bell Labs in Holmdel, NJ, postdocs, wanted to use the 20-foot horn antenna from Echo Satellite program to do astronomy.
 - Boss says, "Arno & Bob, go measure the noise of the radio receiver."
- Measured a "noise temperature" of 6.7 K.


Thermal Radiation

- Thermal radiation, also called black-body radiation
 - · Emitted by anything warm
 - Wien's Law: Wavelength changes with temperature

 λ peak = 2.9mm K /T

- For the sun, T=5700K
 λpeak =2.9mm/5700K=500nm
- For a person, T=273+37=310K.
 λpeak =.01mm (infrared)
- For universe, T=2.73K.
 λpeak =1mm (microwave)

Thermal Radiation: emissivity

- Amount of radiation depends on emissivity.
- Shine light on a surface. Emissivity = fraction of light absorbed. (The rest is reflected.)
 - Emissivity = 1 for a black surface
 - Emissivity = 0 for a mirror
- Energy emitted per second depends on Area×emissivity×T⁴.
 - For mirror, energy emitted is zero.
 - For black surface, energy emitted is AreaT⁴
- 1. I shine light on a surface, and 10% is absorbed. This surface emits more like ____. I shine light out into space. Space emits more like ____.
 - A. a mirror for both
 - B. mirror. black surface.
 - C. black surface. mirror.
 - D. a black surface for both

1965 Discovery of Radiation

- Penzias & Wilson's measured the radiation at wavelength 30cm.
- They reported the amount of radiation as a temperature. If the sources are black (emissivity =1), then the temperatures are:

Source	Radiation
Total	6.7K
Sky	2.3K
Antenna	0.9K
Unaccounted	3.4K

Meaning of "Antenna temperature"

- P&W reported the amount of radiation as a temperature. If the sources are black (emissivity =1), then the temperatures are in the table.
- 1. On a summer day, the temperature of the antenna is about 300K, and yet they measured its "temperature" to be 0.9K. The two temperatures disagree because
 - A. The antenna is almost black.
 - B. The antenna is nearly a mirror.
 - C. A black body with a temperature of 300 K emits very little light at wavelength 30 cm.

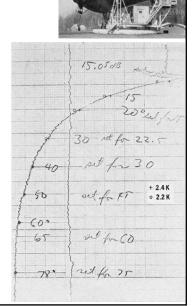
Source	Radiation
Total	6.7K
Sky	2.3K
Antenna	0.9K
Unaccounted	3.4K

Antenna temperature

- Could not account for 3.4 K
 - "Pigeons... had covered the inside with a white material familiar to all city dwellers. We...cleaned up their mess, but obtained only a small reduction in antenna temperature."
- 1. "White material" raises the antenna temperature, because
 - A. it absorbs light with wavelength 30 cm.
 - B. it reflects light with wavelength 30 cm.
 - C. it is hotter than the antenna.

Source	Radiation
Total	6.7K
Sky	2.3K
Antenna	0.9K
Unaccounted	3.4K

How P&W measured sky temperature


- P & W measured the sky to emit the same radiation as a 2.3-K blackbody.
- By "sky," they mean the radiation emitted by the air molecules.
- How did they measure the amount of radiation that the air molecules emit? (They did not use a thermometer.)

Source	Radiation
Total	6.7K
Sky	2.3K
Antenna	0.9K
Unaccounted	3.4K

How P&W measured sky temperature

- The effect:
 - When the antenna is pointed straight up, the antenna collects radiation from 1 layer of air.
 - When the antenna is toward the horizon, the antenna collects radiation from a thicker layer of air
- Have you observed this effect?
- They pointed the antenna
 - almost straight up (78°).
 - and then at 15° from the horizon and got more light.

Penzias & Wilson's conclusion

- P & W measured the total "temperature" and the temperature of two known sources.
- They report: The total amount of radiation is equivalent to a black body with temperature 6.7K. We can account for 3.2 K of it. We cannot account for 3.4 K of it.

Source	Radiation
Total	6.7K
Sky	2.3K
Antenna	0.9K
Unaccounted	3.4K

Is radiation from the Big Bang?

- Penzias & Wilson, 1965, "A measurement of the excess antenna temperature at 4080Mc/s," ApJ 142, 419
 - "The excess temperature is ... isotropic, unpolarized, and free from seasonal variation."
- Dicke, Peebles, Roll, & Wilkinson, 1965,
 "Cosmic Black-body Radiation," ApJ 142, 414.
 - "Could the universe have been filled with black-body radiation from this possible high-temperature state?
- The excitement was that this radiation could be from the Big Bang. Was there evidence in support or evidence that refutes?

Bob Dicke

Is the radiation from the Big Bang?

- Penzias & Wilson, 1965, "A measurement of the excess antenna temperature at 4080Mc/s," ApJ 142, 419
 - "The excess temperature is ... isotropic, unpolarized, and free from seasonal variation."
- Isotropic means we observe the same intensity in all directions. It does not means the source emits the same in all directions.
- Free from seasonal variations means the intensity in summer and winter are the same.

- Would we observe radiation from the sun to be isotropic? Is radiation from the Big Bang isotropic?
 - A. YY
 - B. YN
 - C. NY
 - D. NN
- Is radiation from near the antenna (such as from some trees) free of seasonal variations? Is radiation from the Big Bang free of seasonal variations? Same foils.