For Problem 2, it is helpful to use a celestial sphere. There is one in 3260 BMPS.

1. Erathosthenes noticed that the sun lit the bottom of a well in Syene at noon on one day and that in Alexandria the sun cast a shadow that was 7° from vertical. The distance from Alexandria to Syene is 500 km .
a. (5 pts.) Suppose Herathosthenes lived on Hearth that is 3000 km in radius. Herathosthenes noticed that the sun lit the bottom of a well in Hsyene at noon on one day. What is the angle of the shadow of a vertical stick in Halexandria. The distance from Halexandria to Hsyene is 500 km .

Picture Hsyene, Halexandria, and the center of Hearth. The distance between Hsyene and Halexandria is a fraction $500 \mathrm{~km} /(2 \pi 3000 \mathrm{~km})$ of the circumference. It is also $\left(\mathrm{x}^{\circ}\right) / 360^{\circ}$, where x is the angle of the shadow in Halexandria. Therefore $\mathrm{x}=360^{\circ} 500 \mathrm{~km} /(2 \pi$ $3000 \mathrm{~km})=9.5^{\circ}$.
2. The coordinates of the center of the Milky Way galaxy are $17^{\mathrm{hr}} 39^{\mathrm{min}}$ right ascension and -29° declination.
a. (5 pts.) When is the best time of year to observe it? Explain how you can figure this out from knowing that the right ascension of the sun is $0^{\mathrm{hr}} 0^{\mathrm{min}}$ on the vernal equinox.
You want to observe for the longest part of the night, which means it rises at sunset and sets at sunrise. In the figure for question 3, left is 0 hr . Therefore the galactic center (18 hr) is up. On $6 / 21$, the sun is setting when 18 hr is rising.
b. (2 pts.) Is it better to observe it from Michigan or Pis from Chile in South America? Explain your reasoning.
It is better to observe in
Chile. Because the
declination is -29°, it passes
overhead at latitude -29°,
which is in Chile. In
Michigan, at $+44^{\circ}$ latitude, it is at best only 17° above the horizon, which is very

Figure 1 As given in the problem low in the sky.
3. A mental model of the sky, which we introduced in class.
a. (5 pts.) A star rises at 8 pm . When does it rise two months from now? Explain how you deduced the answer.

Today is close to $9 / 21$. The arrow on the figure is you at 8 pm , and the line is the horizon. (Note that because the constellations are many, many times as far from us as the sun, that to see what is somewhere in relation to the earth you have to shrink the earth's orbit

(Note that if you said your sunset was at 8 pm , then Cap would be high in the sky)

