Answers will be put on angel at $1: 01 \mathrm{pm}$, Mon., $9 / 26$. Late papers will be accepted until then.

Planet	Period $(\mathbf{y r})$	Semi-major axis (AU)	Eccentricity
Mercury	0.241	0.387	0.206
Venus	0.615	0.723	0.007
Earth	1.000	1.000	0.017
Mars	1.881	1.523	0.093
Jupiter	11.86	5.202	0.049
Saturn	29.46	9.539	0.056

1. Preparation (not graded).
a. In one sentence, state Kepler's First Law. Is this law about the property of a planet, or is it a relationship between different planets? Draw a diagram that includes the elements of the law.
b. Answer the same questions for Kepler's Second Law.
c. Answer the same questions for Kepler's Third Law.
2. A Comet has an orbital period of 100 years, and its eccentricity is 0.97 .
a. (4 pts.) How far from the sun does it get? Give your answer in AU.
b. (not graded) How close to the sun does it get?
c. (2 pts .) What the ratio between its fastest and slowest orbital speeds?
3. A new planet is found in the solar system. Its period is 36 days or 0.1 year. Assume the orbit is circular.
a. (2 pts.) Is its orbit smaller or larger than that of Mercury around the sun? Explain how you can answer this without computing a numerical answer. (Use the table.)
b. (3 pts .) Compute the radius of the orbit.
