The Great Debate: *The Size of the Universe* (1920)

- Heber Curtis
 - Our Galaxy is rather small, with Sun near the center.
 - 30,000 LY diameter.
 - Universe composed of many separate galaxies
 - Spiral nebulae = "island universes"

Harlow Shapley

- Our Galaxy is very large, with Sun far from center.
 - 300,000 LY diameter.
 - Sun 60,000 LY from center.
- Spiral Nebulae are inside our galaxy.
 - "nova" magnitudes
 - "Proper motion" → rapid rotation.

		$n(z,r) = n_{c}(e^{-z/z_{thin}} + 0.02e^{-z/z_{thick}})e^{-z/z_{thick}}$		
le 24.1]	L		,	
		Disks		
	Neutral	Thin	Thick	
	Gas	Disk	Disk	
$M \ (10^{10} \ { m M}_{\odot})$	0.5^{a}	6	0.2 to 0.4	
$L_B (10^{10} \text{ L}_{\odot})^b$		1.8	0.02	
$M/L_B~({ m M}_\odot/{ m L}_\odot)$		3		
Radius (kpc)	25	25	25	
Form	e^{-z/h_z}	e^{-z/h_z}	e^{-z/h_z}	
Scale height (kpc)	< 0.1	0.35	1	
$\sigma_w (\mathrm{km}\mathrm{s}^{-1})$	5	16	35	
[Fe/H]	> +0.1	-0.5 to $+0.3$	-2.2 to -0.5	
Age (Gyr)	$\lesssim 10$	8^c	10^d	

Baade (1944) Stellar Populations • Abundances • Kinematics • Kinematics • Ages • Pop I : Metal rich (Z ~ 0.02), disk, younger • Disk field stars (up to 10-12 Gyr old) • Open clusters Pop I • Gas • Star formation regions • Pop II: Metal poor (Z ~ 0.001), halo, older • Globular clusters (12-15 Gyr) • Halo field stars • Bulge???but includes metal rich stars.	X,Y,Z = ma X ~ 0.73 Y ~ 0.25 Z ~ 0.02	Ass fractions (H) (He) (metals)
Stellar spectroscopy		[Fe/H]
• [Fe/H], etc. $\rightarrow \log(N_{Fe}/N_{H}) - \log(solar)$	Thin Disk	-0.5->+0.3
 Iron ejected by Sne Ia after about 10⁹ yrs. Iron effen uppd op tropper of all motols 	Thick Disk	-2.2-> -0.5
 Stellar colors 	Halo	-5.4→ -0.5
HII regions	Bulge	-2.0->+0.5

