

Predicted paths of stars on HR diagram

Baade (1944) Stellar Populations

- Abundances
- Kinematics

$X, Y, Z=$ mass fractions
$X \sim 0.73(H)$
$Y \sim 0.25$ (He)
$Z \sim 0.02$ (metals)

- Ages
- Pop I: Metal rich (Z ~ 0.02), disk, younger
- Disk field stars (up to 10-12 Gyr old)
- Open clusters
- Gas
- Star formation regions
- Pop II: Metal poor (Z ~ 0.001), halo, older
- Globular clusters (12-15 Gyr)
- Halo field stars
- Bulge???but includes metal rich stars.
- Abundance Determinations
- Stellar spectroscopy
- [Fe/H], etc. $\rightarrow \log \left(\mathrm{N}_{\mathrm{Fe}} / \mathrm{N}_{\mathrm{H}}\right)-\log ($ solar $)$
- Iron ejected by SNe la after about 10^{9} yrs.
- Iron often used as tracer of all metals.
- Stellar colors
- HII regions

	$[\mathrm{Fe} / \mathrm{H}]$
Thin Disk	$-0.5 \rightarrow+0.3$
Thick Disk	$-2.2 \rightarrow-0.5$
Halo	$-5.4 \rightarrow-0.5$
Bulge	$-2.0 \rightarrow+0.5$

Measuring abundances from absorption lines

- Lorentz profile
- Natural profile of stationary absorber.
- wings due to finite lifetime of excited state in QM model..
- Or to "damping" in classical oscillator mode.

- Voigt profile
- Lorentz profile convolved with Gaussian velocity distribution.
- Line shape increases in funny way.

EQUIVALENT WIDTH

- Often, wavelength resolution and/or signal:noise too low to measure details of line profile.
- Can still measure fraction of continuum light that is absorbed
- then convert to column density of absorbing atoms.

$$
\mathrm{W}_{\lambda}=\int\left[1-\frac{\mathrm{I}_{\lambda}}{\mathrm{I}_{\lambda}(0)}\right] \mathrm{d} \lambda=\frac{\lambda^{2}}{\mathrm{c}} \int\left[1-\mathrm{e}^{-\tau_{\lambda}}\right] \mathrm{d} \lambda
$$

$$
\text { in units of } \AA
$$

- same as width of square profile going to zero and having same W_{λ} as observed line.

$$
\begin{aligned}
& \text { Optical depth: } \\
& \begin{aligned}
\tau_{\lambda} & =\int \alpha_{\lambda} n \text { ds } \\
\mathrm{I}_{\lambda} & =\mathrm{I}_{\lambda}(0) \mathrm{e}^{-\tau_{\lambda}} .
\end{aligned}
\end{aligned}
$$

Column density: (atoms $/ \mathrm{cm}^{2}$ along line of sight) $\mathrm{N}=\int \mathrm{nds}$

CONVERTING W TO COLUMN DENSITY OF ABSORBING ATOMS:

$$
\mathrm{W}_{\lambda}=\int\left[1-\frac{\mathrm{I}_{\lambda}}{\mathrm{I}_{\lambda}(0)}\right] \mathrm{d} \lambda=\frac{\lambda^{2}}{\mathrm{c}} \int\left[1-\mathrm{e}^{-\tau_{\lambda}}\right] \mathrm{d} \lambda
$$

CURVE OF GROWTH shows how W_{λ} depends on N

- For small column density:

$$
\begin{aligned}
& \mathrm{W}_{\lambda}=\lambda^{2} \tau_{\lambda} \\
& \frac{\mathrm{W}_{\lambda}}{\lambda} \propto \mathrm{N}_{\mathrm{j}} \mathrm{f}_{\mathrm{jk}} \lambda
\end{aligned}
$$

where j,k are lower, upper levels,

f_{jk} is oscillator strength $=$ effective number of oscillators participating in transition.

- For intermediate column density: where $b=\operatorname{sqrt}\left(\mathrm{v}_{0}{ }^{2}+\mathrm{v}_{\text {turbulent }}{ }^{2}\right)$:

$$
\frac{\mathrm{W}_{\lambda}}{\lambda} \propto \mathrm{b}\left[\ln \left(\frac{.015 \mathrm{Nf} \lambda}{\mathrm{~b}}\right)\right]^{1 / 2}
$$

- For large column density:

$$
\frac{\mathrm{W}_{\lambda}}{\lambda} \propto\left(\lambda^{2} \mathrm{Nf}\right)^{1 / 2}
$$

Sliding observed c.o.g. over theoretical c.o.g in both x and $\mathrm{y} \rightarrow \mathrm{N}, \mathrm{b}$

Baade (1944) Stellar Populations

- Abundances
- Kinematics

```
X,Y,Z = mass fractions
    X ~ 0.73 (H)
    Y ~ 0.25 (He)
    Z ~ 0.02 (metals)
```

- Ages
- Pop I: Metal rich (Z ~ 0.02), disk, younger
- Disk field stars (up to 10-12 Gyr old)
- Open clusters
- Gas
- Star formation regions
- Pop II: Metal poor (Z ~ 0.001), halo, older
- Globular clusters (12-15 Gyr)
- Halo field stars
- Bulge???but includes metal rich stars.
- Abundance Determinations
- Stellar spectroscopy
- [Fe/H], etc. $\rightarrow \log \left(\mathrm{N}_{\mathrm{Fe}} / \mathrm{N}_{\mathrm{H}}\right)-\log$ (solar)
- Iron ejected by SNe la after about 10^{9} yrs.
- Iron often used as tracer of all metals.
- Stellar colors
- HII regions

	$[\mathrm{Fe} / \mathrm{H}]$
Thin Disk	$-0.5 \rightarrow+0.3$
Thick Disk	$-2.2 \rightarrow-0.5$
Halo	$-5.4 \rightarrow-0.5$
Bulge	$-2.0 \rightarrow+0.5$

The Initial Mass Function (IMF)

- $d N=N_{o} \xi(M) d M=$ number of stars born with masses in range $M, M+d M$
- Salpeter (1955) IMF: $\xi(M) \propto M^{-2.35}$
- Scalo (1986) IMF:

$$
\begin{aligned}
& \xi(M) \propto M^{-2.45} \text { for } M>10 M_{\odot} \\
& \xi(M) \propto M^{-3.27} \text { for } 1<M<10 M_{\odot} \\
& \xi(M) \propto M^{-1.83} \text { for } 0.2<M<1 M_{\odot}
\end{aligned}
$$

- Others as well.
- Star Formation rate $=\psi(t)$

[CO Fig. 26.18]
- Stellar birthrate function
$B(M, t)=\psi(t) \xi(M) d M d t$

$=$ number of stars born per unit volume with masses in range $M, M+d M$ in time interval $t, t+d t$.
[CO eqn. 26.4]

Modeling chemical enrichment

- One zone, accreting box model.
- Start with pure H, He mix.
- Further H, He falls in at specified rate.
- Follow evolution of individual elements $\mathrm{H}, \mathrm{He}, \mathrm{C}$, $\mathrm{N}, \mathrm{O}, \mathrm{Ne}, \mathrm{Mg}, \mathrm{Si}, \mathrm{S}, \mathrm{Ar}, \mathrm{Ca}$ and Fe.
- Subdivide stellar population into three classes of stars:
- $<1 \mathrm{M}_{\odot} \quad$ nothing recycled
- $1.0-8.0 \mathrm{M}_{\odot}$ fraction give white dwarf supernovae
- $>8 \mathrm{M}_{\odot} \quad$ Core collapse supernovae.
- Assume that each class of stars spews specified \% of its mass of each element back into ISM at end of a specified lifetime.
- Must provide IMF to specify mix of star masses.
- Two extreme models:
- "Solar neighborhood": conventional IMF, slow stellar birthrate, slow infall (15\% gas at 10 Gyr) .
- "Giant Elliptical": flatter IMF, 100x higher birthrate, fast infall (15\% gas at 0.5 Gyr).

Ingredients:

- Evolution of star of mass m
- IMF = number of stars formed with each m
- \rightarrow evolving composite spectrum $f_{\lambda}(\tau)$
- Star formation rate $\Psi(\mathrm{t})=\tau^{-1} \exp (-\mathrm{t} / \tau)$
- $F_{\lambda}(t)=\int \Psi(t-\tau) f_{\lambda}(\tau) d \tau$

Population Synthesis Models
Bruzual \& Charlot (1993); Worthey et al (1994)

Some Bruzual \& Charlot results

Models fitted to real spectra for different galaxy types.

Components of late type spiral galaxy spectrum

