

St	tar clusters
Table 20 J	• Angle Australian Observator • Angle Australian Observator • Angle Australian Observator • In Clusters: formed in disk of Galaxy. • recently-formed, some middle-aged.
Globular cluster	Globular Clusters: ~ 150 in spherical distribution in our Galaxy. All are very old.

Baade (1944) Stellar Populations • Abundances • Kinematics • Ages • Pop I : Metal rich (Z ~ 0.02), disk, younger • Disk field stars (up to 10-12 Gyr old) • Open clusters • Gas • Star formation regions • Pop II: Metal poor (Z ~ 0.001), halo, older • Globular clusters (12-15 Gyr) • Halo field stars • Bulge???but includes metal rich stars. • Abundance Determinations • Open clusters	X,Y,Z = ma X ~ 0.73 Y ~ 0.25 Z ~ 0.02	Ass fractions (H) (He) (metals)
Stellar spectroscopy		[Fe/H]
• [Fe/H], etc. $\rightarrow \log(N_{Fe}/N_{H}) - \log(solar)$	Thin Disk	-0.5 → +0.3
 Iron ejected by SNe la after about 10⁹ yrs. 	Thick Disk	-2.2-
 Iron orien used as tracer of all metals. Stellar colors 	Halo	-5.4-> -0.5
HII regions	Bulge	-2.0→+0.5

Baade (1944) Stellar Populations • Abundances • Kinematics • Kinematics • Ages • Pop I : Metal rich (Z ~ 0.02), disk, younger • Disk field stars (up to 10-12 Gyr old) • Open clusters Pop I • Gas • Star formation regions • Pop II: Metal poor (Z ~ 0.001), halo, older • Globular clusters (12-15 Gyr) • Halo field stars • Bulge???but includes metal rich stars.	$x, Y, Z = ma$ $X \sim 0.73$ $Y \sim 0.25$ $Z \sim 0.02$ Status St	Ass fractions (H) (He) (metals)
Stellar spectroscopy		[Fe/H]
• [Fe/H], etc. $\rightarrow \log(N_{Fe}/N_{H}) - \log(solar)$	Thin Disk	-0.5->+0.3
 Iron ejected by SNe la after about 10⁹ yrs. Iron eften used on tracer of all metals 	Thick Disk	-2.2-> -0.5
 Stellar colors 	Halo	-5.40.5
HII regions	Bulge	-2.0 → +0.5

