

What sets the parallax limit?
Fuzzy images

. blurred by Earth's atmosphere.
Old limit for parallax distances: 20-50 parsecs

Sharp Images from Space

Hipparcos
Old limit for parallax distances: 20-50 parsecs

Hipparcos (1989-1993):
100-200 parsecs
($1 \sigma=1$ milliarcsec $=1 \mathrm{kpc}$)

Coming Soon

GAIA spacecraft: Dec 2011 launch
Old limit for parallax distances: 20-50 parsecs

Hipparcos (1989-1993):

> 100-200 parsecs ($1 \sigma=1$ milliarcsec $=1 \mathrm{kpc}$)

Pulsating Variable Stars

- These stars regularly expand \& contract.
- Like a big spring.
- Change in size \rightarrow
- change in temperature
- change in luminosity

P-L relation

- discovered in Magellanic Clouds
- calibrated locally, using (statistical) parallaxes

Measuring Distances inside the MW

- Parallax
- Pulsating variables
- Main sequence fitting for clusters

- Calibrate with Hyades (moving cluster method = pp. 919-922)

Distance R_{0} to the Galactic Center

- Massive ($>10^{6} \mathrm{M}_{\text {sun }}$) black hole at G.C.
- Can follow orbits of stars around it.
- Measured radial velocity $\left(\mathrm{v}_{\mathrm{r}}\right)$ of one star at several points in its orbit, and proper motion $\mu\left(\operatorname{arcsec} \mathrm{yr}^{-1}\right)$.
- Orbit fit gives i (inclination), and predicts orbital velocity at each point.
- In concept, solve for $R_{0}=7.94 \pm 0.38 \mathrm{kpc}$
- (actually, it comes out of orbit fit)

Observer

Kinematics of the Milky Way

- From [CO] 24.3, especially pp 901-14.
- Coordinate systems
- Galactic latitude $\left(b_{\mathrm{II}}\right)$, longitude $\left(l_{\mathrm{II}}\right)$
- Spherical coordinates centered on Sun

- R, θ, z
- Cylindrical coordinate system centered on Galactic Center
- Π, Θ, Z
- Velocity components in R, θ, z system.
- Peculiar velocities
u, v, w

- Π, Θ, Z velocities but relative to Local Standard of Rest
- LSR is point instantaneously centered on Sun, but moving in a perfectly circular orbit.
- Solar motion $=$ motion of sun relative to LSR
- Star density is higher towards GC.
- Those stars are on orbits that Sun overtakes.
- Velocity ellipsoids and asymmetrical drift.
\rightarrow LSR's orbital velocity

- Taylor expansion:

$$
\Omega(R)=\Omega_{0}\left(R_{0}\right)+\left.\frac{d \Omega}{d R}\right|_{R_{0}}\left(R-R_{0}\right)+\cdots
$$

Oort's Constants:

$$
\begin{aligned}
& v_{r} \simeq A d \sin 2 \ell \\
& v_{t} \simeq A d \cos 2 \ell+B d
\end{aligned}
$$

$$
\begin{aligned}
A & \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}-\frac{\Theta_{0}}{R_{0}}\right] \\
B & \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}+\frac{\Theta_{0}}{R_{0}}\right]
\end{aligned}
$$

Differential Rotation (see [CO pp. 909-911)

- From the figure:

$$
\begin{aligned}
v_{r} & =\Theta \cos \alpha-\Theta_{0} \sin \ell, \\
v_{t} & =\Theta \sin \alpha-\Theta_{0} \cos \ell,
\end{aligned}
$$

- Angular rotation velocity: $\quad \Omega(R) \equiv \frac{\Theta(R)}{R}$
- + some geometry $\rightarrow v_{r}=\left(\Omega-\Omega_{0}\right) R_{0} \sin \ell$,

$$
v_{t}=\left(\Omega-\Omega_{0}\right) R_{0} \cos \ell-\Omega d
$$

- Taylor expansion:

[Fig 24.22]

$$
\Omega(R)=\Omega_{0}\left(R_{0}\right)+\left.\frac{d \Omega}{d R}\right|_{R_{0}}\left(R-R_{0}\right)+\cdots
$$

$$
\begin{aligned}
& v_{r} \simeq A d \sin 2 \ell \\
& v_{t} \simeq A d \cos 2 \ell+B d
\end{aligned}
$$

$$
\begin{aligned}
A & \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}-\frac{\Theta_{0}}{R_{0}}\right] \\
B & \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}+\frac{\Theta_{0}}{R_{0}}\right]
\end{aligned}
$$

Oort's Constants
$A \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}-\frac{\Theta_{0}}{R_{0}}\right]$
$B \equiv-\frac{1}{2}\left[\left.\frac{d \Theta}{d R}\right|_{R_{0}}+\frac{\Theta_{0}}{R_{0}}\right]$
$v_{r} \simeq A d \sin 2 \ell$,
$v_{t} \simeq A d \cos 2 \ell+B d \longleftarrow$ distance to star

$$
\Omega(R)=\frac{\Theta(R)}{R}
$$

- Evaluate A, B from observations:
- Contain important information about Galactic rotation curve.
- Angular velocity for circular motion at R_{0} :

$$
\Omega_{\mathrm{o}}=A-B=27.2 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{kpc}^{-1}
$$

- Gradient of rotation curve at R_{0} :

$$
\left.\frac{d \Theta}{d R}\right|_{R_{0}}=-(A+B)=-2.4 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{kpc}^{-1}
$$

- Distance to Galactic Center

$$
R_{0} \sim 8 \mathrm{kpc}
$$

Sun's orbital velocity

$$
\Theta_{0}=\Omega_{0} \times \mathrm{R}_{0} \sim 220 \mathrm{~km} \mathrm{~s}^{-1}
$$

- Sun's orbital period

$$
P=\frac{R_{0}}{\Theta_{0}} \sim 230 \text { million yrs. }
$$

- Approx. mass interior to Sun's orbit:

$$
\begin{aligned}
& F_{\text {centrifugal }}=F_{\text {grav }} \\
& \frac{m \Theta_{0}{ }^{2}}{R_{0}}=\frac{G m M}{R_{0}{ }^{2}} \\
& M=\frac{\Theta_{0}{ }^{2} R_{0}}{G} \sim 9 \times 10^{10} \mathrm{M}_{\odot}
\end{aligned}
$$

Rotation Curves

- Spherical mass shell, uniform density Inside shell: no effect
Outside shell: acts as if all mass at center
- $F_{\text {centripital }}=F_{\text {gravity }}$

$$
\frac{d F_{\text {gravity }}}{d \Omega} \propto \frac{\rho \times d(\mathrm{vol})}{r^{2}}
$$

$$
d(\mathrm{vol})=d \Omega r^{2} d r
$$

$$
\begin{aligned}
& \frac{m v^{2}}{r}=\frac{G M(r) m}{r^{2}} \\
& v=\left(\frac{G M(r)}{r}\right)^{1 / 2}
\end{aligned}
$$

Where

$$
v=\text { space velocity }
$$

$$
=\Theta \text { if circular orbit. }
$$

- Inside spherical mass distribution

- Outside spherical mass distribution

$$
\begin{aligned}
& M(r)=\text { const } \\
& \nu \propto r^{-1 / 2}
\end{aligned}
$$

- Spher. Distr. + exponential disk

$$
\begin{aligned}
& V=\left(\frac{G}{r}\right)^{1 / 2}\left\{M(r)+4 m_{d} s^{3}\left[I_{0}(s) K_{0}(s)-I_{1}(s) K_{1}(s)\right]\right\}^{1 / 2} \\
& s=1 / 2 r / h \quad I, K=\text { Bessel functions }
\end{aligned}
$$

Measuring the MW Rotation Curve

In principle, for stars, clusters, etc:

- measure distance d and v_{r}
- $v_{r}=$ radial velocity w.r.t. Sun
- assume circular orbit

For H I $21 \mathrm{~cm}, \mathrm{CO}$, etc. radio emission:

- Only can measure v_{r}
- Use tangent point method
- Only works inside R_{0}

[CO fig 24.24]

Measuring the MW Rotation Curve

- In principle, for stars, clusters, etc:
- measure distance d and v_{r}
- $v_{r}=$ radial velocity w.r.t. Sun
- assume circular orbit
- For H I $21 \mathrm{~cm}, \mathrm{CO}$, etc. radio emission:
- Only can measure v_{r}
- Use tangent point method
- Only works inside R_{0}

- Outside R_{o}
- Must use other methods.
- Must know actual distance + velocity.

[CO pg. 917] Density as shown by flat rotation curves
Back to $F_{\text {centrapitac }}=F_{\text {gravitational }}$
- $\mathrm{dM}(\mathrm{r}) / \mathrm{dr} \sim$ constant

$$
\frac{m v^{2}}{r}=\frac{G M(r) m}{r^{2}}
$$

- Unbounded mass distribution??

$$
M(r)=\frac{v^{2} r}{G}
$$

$\frac{\partial M(r)}{d r}=\frac{v^{2}}{G}$
but also $\frac{d M(r)}{d r}=4 \pi r^{2} \rho(\mathrm{r})$
$\Rightarrow \rho(r)=\frac{v^{2}}{4 \pi G r^{2}}$
$V \sim$ constant $\Rightarrow \rho(r) \propto \frac{1}{r^{2}}$
Use

- NFW profile

$$
\rho(r)=\frac{\rho_{0}}{(r / a)(1+r / a)^{2}}
$$

- Predicted for Cold dark matter (CDM)
- Actual derived dark matter profiles often slightly different than this
- What is CDM? Coming later in course.

Semi-derivation of
 Tully-Fisher Relation:

$$
\begin{align*}
& \mathrm{M}_{\mathrm{B}}=-9.95 \log _{10} V_{\max }+3.15 \tag{Sa}\\
& \mathrm{M}_{\mathrm{B}}=-10.2 \log _{10} V_{\max }+2.71 \tag{Sb}\\
& \mathrm{M}_{\mathrm{B}}=-11.0 \log _{10} V_{\max }+3.31 \tag{Sc}
\end{align*}
$$

- Mass interior to outermost R where rotation curve can be measured:

$$
\text { Mass }=\frac{V_{\max }^{2} R}{G}
$$

- Assume $L=$ Mass / const.
- "Freeman Law" (observed fact ---maybe):

$$
\text { Surf.Bright. }=\frac{L}{4 \pi R^{2}}=\text { const. }
$$

Important as a DISTANCE calibrator!

$$
L=\text { const } \times V_{\max }^{4}
$$

- Convert to Absolute B-band magnitudes:

$$
\mathrm{M}_{\mathrm{B}}=\mathrm{M}_{\text {sun }}-2.5 \log _{10}\left(\frac{L}{L_{\text {sun }}}\right)=-10 \log _{10} V_{\max }+\text { const. }
$$

SO FAR:

- Galaxy types
- Ancient history
- Milky Way and spiral galaxy morphology
- Nuclear bulge
- Disk
- Stellar halo
- Dark matter halo
- Star-forming regions

> Hwk 3 Due Sept 29
> CO 24.15 - just part (a).
> CO 24.21
> CO 24.36 (a),(b)
> CO 25.14
> CO 25.16

- Chemical enrichment

Distance measurements within MW

Kinematics of spiral galaxies

- Rotation curves \rightarrow mass distribution
- Spiral structure [CO 25.3]
- General properties of S, E, Irr galaxies
- Midterm 1 (Tu. Oct 4)

