

• Distance to Galactic Center

$$R_0 \sim 8 \text{ kpc}$$

• Sun's orbital velocity
 $\Theta_0 = \Omega_0 \times R_0 \sim 220 \text{ km s}^{-1}$
• Sun's orbital period
 $P = \frac{R_0}{\Theta_0} \sim 230 \text{ million yrs.}$
• Approx. mass interior
to Sun's orbit:
 $F_{centrifugal} = F_{grav}$
 $\frac{m\Theta_0^2}{R_0} = \frac{GmM}{R_0^{-2}}$
 $M = \frac{\Theta_0^2 R_0}{G} \sim 9 \times 10^{10} \text{ M}_{\odot}$

[CO pg. 917] Density as shown by flat rotation curves
BACK TO
$$F_{CENTREPETARC} = F_{GRAVITATIONAL}$$

 $\frac{m V^2}{r} = \frac{GM(r)}{V^2}$
 $M(r) = \frac{V^2 r}{C}$
 $M(r) = \frac{V^2 r}{C}$
 $M(r) = \frac{V^2}{C}$
 $\frac{dM(r)}{dr} = 4\pi r^2 \rho(r)$
 $\frac{dV}{dr} = \frac{V^2}{4\pi C r^2}$
 $V \sim constant \Rightarrow \rho(r) \propto \frac{1}{r^2}$
 $Use \rho(r) = \frac{C_o}{(a^2 + r^2)}$
 $p(r) = \frac{r}{r}$
 $\frac{r}{r}$

Semi-derivation of Tully-Fisher Relation: • Mass interior to outermost <i>R</i> where re	$M_{\rm B} = -9.95 \log_{10} V$ $M_{\rm B} = -10.2 \log_{10} V$ $M_{\rm B} = -11.0 \log_{10} V$	$m_{max} + 2.71$ (Sb) $m_{max} + 3.31$ (Sc)
$Mass = \frac{V_{max}^2 R}{G}$ • Assume $L = Mass / const.$		
• "Freeman Law" (observed factmaybe): $Surf.Bright. = \frac{L}{4\pi R^2} = const.$ $L = const \times V_{max}^4$		Important as a DISTANCE calibrator!
• Convert to Absolute B-band magnitudes: $M_{\rm B} = M_{\rm sun} - 2.5 \log_{10} \left(\frac{L}{L_{\rm sun}}\right) = -10 \log_{10} V_{\rm max} + const.$		

SO FAR:

- Galaxy types
- Ancient history
- Milky Way and spiral galaxy morphology

Hwk 3 Due Sept 29

CO 24.36 (a),(b) CO 25.14

CO 24.21

CO 25.16

CO 24.15 - just part (a).

- Nuclear bulge
- Disk
- Stellar halo
- Dark matter halo
- Star-forming regions
 - Star-forming regions
- Chemical enrichment

Distance measurements within MW

Kinematics of spiral galaxies

- Rotation curves → mass distribution
- Spiral structure [CO 25.3]
- General properties of S, E, Irr galaxies
- Midterm 1 (Tu. Oct 4)