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Ellipticals

Huge mass range:
• Dwarf spheroidals:  107-108 M

• Blue compact dwarfs:  ~109 M

• Dwarf ellipticals:  107-109 M

• Normal (giant) ellipticals:  108-1013 M

• cD galaxies in cluster centers:  1013-1014 M

cD (NGC 3311)

Giant E 
(NGC 1407)

Dwarf 
spheroidal 
(Leo I)

Dwarf ellipticals M32, NGC 205

HST 
images

• Hubble’s law

• Modified Hubble’s law

• deVaucouleurs’ R1/4 law usually fits radial surface brightness distribution

• + others
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Diverges, but at least is projection 
of simple 3D distribution: 

cD

r1/4

Ellipticals
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True shapes requires statistical analysis

• Oblate = pancakes

• Prolate = footballs
[CO figs 25.2, 25.3]

True shapes requires statistical analysis

• Lower luminosity  rotationally supported 
• (Vrot /  ) ~     /(1- )

• Higher L  pressure supported
• (Vrot /  ) <<  1

From Binney & Tremaine, Galactic Dynamics

= low L ellipticals
x = spiral bulges high L ellipticals

Curve expected for galaxies 
that are flattened by rotation 
(i.e. have isotropic random 
velocity dispersions)

CO pgs. 988-989

(V/)* = 0.7

Rotationally 
Supported

Ellipticity = 1 – b/a

E galaxy = K star 
convolved with 
Gaussian velocity 
distribution of stars.

K star

Observed Spectrum
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Statistics of  = (1- b/a)

• Oblate, prolate spheroids can’t fit the 
observed distribution.

• Summing over wide range of true values 
of  would fill in the dip at obs = 0.

• Triaxial spheroids can fit.
• Nearly oblate triaxial spheroids seem 

best.
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Oblate, true = 0.7

Prolate, true = 0.5

 observed

Triaxial, 
Axis ratios 1:0.8:0.3

From Binney & Merrifield, Galactic Astronomy

Other evidence for triaxial systems

• Isophotal twists
• Kinematics (star motions)

From Binney & Merrifield, Galactic Astronomy
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Orbits in E galaxies

• Some families of non-closed 
orbits in a  mildly triaxial 
potential.

From Binney & Tremaine, Galactic Dynamics

E galaxies are transparent, but  40% still 
have some dust lanes

• Even if complete star formation at t=0, stars must 
subsequently have lost gas. 

• Detected by:
• X-rays (Brehmsstrahlung):  108-1010 M

• H I emission lines:   107-109 M

• H II emission lines:   104-105 M

• But gas can be lost by
• Supernova-driven winds

• Ram pressure stripping
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The Virial Theorem [CO 2.4]

• For gravitationally bound systems in equilibrium
• Time-averaged kinetic energy =  - ½ time-averaged potential energy.

E = total energy
U = potential energy.
K = kinetic energy.

E = K + U

• Can show from Newton’s 3 laws + law of gravity:
• ½ (d 2I/dt 2 ) - 2K = U where    I =  miri

2 = moment of inertia.

• Time average   < d 2I/dt 2 > = 0,    or at least ~ 0.

• Virial theorem  -2<K> = <U>
<K> = - ½ <U>

<E> = <K> + <U>
<E> = ½ <U>

Mass determinations from
absorption line widths

• Virial Theorem 
2K = -U

K = ½ M<v2> = 3/2 M <r
2>



• See pp. 959-962, + Sect. 2.4

• Applied to nuclei of spirals 

 presence of massive black holes

• Also often applied to
• E galaxies

• Galaxy clusters
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[CO 25.14]

Sorry… I had left out 
the ½ when I showed 
this slide in class.
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Mass determinations from
absorption line widths

• Virial Theorem 
2K = -U

<v2> = 3 <vr
2>

K = ½ M<v2> = 3/2 M <r
2>



• See pp. 959-962, + Sect. 2.4
•

• Applied to nuclei of spirals 

 presence of massive black holes
•

• Also often applied to
• E galaxies

• Galaxy clusters
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Fourier Transforms

E galaxy = K star 
convolved with 
Gaussian velocity 
distribution of 
stars.

K star

Star

Galaxy

Ratio

Gaussian fit: 
• Convolution turns into multiplication in F.T. space.
• F.T. of a Gaussian is a Gaussian.

Observed Spectrum

Faber-Jackson relation: Le ~ 0
4

(Absolute magnitude)
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Mass-Luminosity relationships
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From Binney & Merrifield, Galactic Astronomy

CO give different coefficients???

re  0
1.24Ie

-0.82

L  0
2.65re

0.65

• Faber-Jackson relation: Le ~ 0
4

• Dn - 0 correlation.
• Dn = diameter within which <I> = 20.75 B

• Fundamental plane in log Re, <I>e, log 0 space
• Re = scale factor in R1/4 law

• <I>e = mean surface brightness within Re Different from Ie !

• Intro. to Principle Component Analysis: astro-ph/9905079

mag/arcsec2

Distribution of galaxy types

• Dense regions (cluster 
centers) predominantly 
ellipticals.

• Field galaxies 
predominantly spirals.

• On average, roughly even 
split between E and S.
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Schechter Luminosity Function
 (L)dL = L e-L/L* dL

(M)dM = 10 –0.4(+1)M e –10 dM

• The Milky Way is an L* galaxy.

0.4(M * - M)

[CO 25.36]

[BM 4.12]
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Problem 24.36: “Point mass M0 at center of MW + mass distributed 
with density (r)  1/r2.    (a) Show that Mr= kr+M0.”

Correct:

Wrong: anything that does not show that you realized that you 
need to integrate over 

G

vR
M esc

2

2
0

0

2

2 R

GmMmvesc 

G

vR
M esc

2
0

Problem 24.15: “Assuming that the highest velocity stars              
are near the escape speed, estimate the mass of the M.W.”

Correct: vesc = vcirc + max vpec =  220 + 65  ~  300 km s-1. 

K.E. = Potential Energy    

Wrong: follow example 24.3.1 and calculate mass required to 
hold star in circular orbit with v = 300 km s-1
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