Ellipticals

Huge mass range:
Dwarf spheroidals: 10
Blue compact dwarfs:
Dwarf ellipticals: 107-
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True shapes requires statistical analysis
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True shapes requires statistical analysis

+ Lower luminosity =» rotationally supported
° (Vrot/ O-) - Jd(l- g) '\Ellipticity=1—b/a

e Higher L =>» pressure supported

Curve expected for galaxies
(V! o) << 1 that are flattened by rotation
(i.e. have isotropic random
velocity dispersions)
* =low L ellipticals . -
x = spiral bulges high L ellipticals
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Figure 4-6. (a) The positions in the (v/e,¢) plane of elliptical 8 alaxies ( (In\s] and distribution of stars.
of spheroids (crosses), that have luminosities smaller than 5% 1010 L. (b)
The as (a) but for elliptical galaxies brighter than L = 2.5 x 1010 L. l\flrr

Davies et al. 1983.)

From Binney & Tremaine, Galactic Dynamics




Statistics of £ = (1- b/a)

* Oblate, prolate spheroids can’t fit the o e < R
observed distribution. ]

+  Summing over wide range of true values s
of ewould fill in the dip at &, = 0. 100 f
« Triaxial spheroids can fit. .
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Other evidence for triaxial systems

* |sophotal twists
» Kinematics (star motions)

Figure 4.24 Isophotal twist as
co ial el

From Binney & Merrifield, Galactic Astronomy




3.4 Orbits in Three-Dimensional Triaxial Potentials 155

From Binney & Tremaine, Galactic Dynamics

Orbits in E galaxies

» Some families of non-closed
orbits ina mildly triaxial
potential.

— Figure 3-20. Orbit
left: (a) box orbit;
outer long-axis tube orbit. [Cou

(1986).]

E galaxies are transparent, but 40% still
have some dust lanes
» Even if complete star formation at t=0, stars must
subsequently have lost gas.
» Detected by:
»  X-rays (Brehmsstrahlung): 108-101° M
* Hlemission lines: 107-10°M,, G
e H Il emission lines: 10*10°M, B

» But gas can be lost by
« Supernova-driven winds
< Ram pressure stripping




The Virial Theorem [CO 2.4]

« For gravitationally bound systems in equilibrium
« Time-averaged kinetic energy = - % time-averaged potential energy.

E = total energy
U = potential energy.
K = Kkinetic energy.

E=K+U

¢ Can show from Newton’s 3 laws + law of gravity:
o % (d?/dt?)-2K=U  where |=2Xmr?=moment of inertia.

» Timeaverage <d?2l/dt2>=0, oratleast~D0.

e Virial theorem = -2<K> = <U>
<K>=-%<U>
<E>=<K>+<U>=D>
<E>=Y%<U>

Mass determinations from
Sorry... | had left out . . .
the % when | showed absorption line widths

this slide in class.

¢ Virial Theorem

2K =-U 3GM?
=—— [CO 25.14]
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« Also often applied to
» E galaxies
« Galaxy clusters
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Mass determinations from
absorption line widths

* Virial Theorem
2K=-U

<v2> =3 <Vr2>

K =% M<v®> =32 M <g; %>

2
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e See pp. 959-962, + Sect. 2.4
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Fourier Transforms

« E galaxies

» Galaxy clusters
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Gaussian fit:

K star

E galaxy = K star
convolved with
Gaussian velocity
distribution of
stars.
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« Convolution turns into multiplication in F.T. space.

¢ F.T. of a Gaussian is a Gaussian.

I(R)=1,10
I, = surface brightness at R,
L, = luminosity within R,

i

Faber-Jackson relation: L, ~ oy
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Mass-Luminosity relationships

Faber-Jackson relation: L, ~ oy

D, - oy correlation.

e D, = diameter within which <I> =20.75 z;

333 31,44}
I(R)=1,10 (%)

Fundamental plane in log R,, <I>,, log oy space

e R, =scale factor in RV law
«  <I>, = mean surface brightness within R, Different from I, ! | CO give different coefficients???

« Intro. to Principle Component Analysis: astro-ph/9905079 r, o ot 082
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Schechter Luminosity Function
¢ (L)dL =L« e-L/L* dL
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e The Milky Way is an L" galaxy.
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Problem 24.15: “Assuming that the highest velocity stars
are near the escape speed, estimate the mass of the M.W.”

COITEC: Voo = Ve + MAX Ve, = 220 + 65 ~ 300 km st

2 2
mv GmM Rv

K.E. = Potential Energy = —== > M =08
» 2 R, 2G

Wrong: follow example 24.3.1 and calculate mass required to
hold star in circular orbit with v = 300 km s1 RV

esc

M = e
G

Problem 24.36: “Point mass M, at center of MW + mass distributed
with density p(r) e 1/r2.  (a) Show that M,= kr+M,.”

Correct: .  C
M, = |;/|0 +j0p(r’) dvol(r') = M, +j0 ?4;zr'2dr’ =M, +Céar

Black Hole

Wrong: anything that does not shgw that you realized that you
need to integrate over p(r)dvol(r’)




