The Next 2-3 Weeks

[27.1] The Extragalactic Distance Scale.
[27.2] The Expansion of the Universe.
[29.1] Newtonian Cosmology
[29.2] The Cosmic Microwave Background
[17] General Relativity \& Black Holes

[29.3] Relativistic Cosmology (Oct. 18?)

Important to read through Chapter 17 (Relativity) before I start lecturing on it.
Pay particular attention to 17.2 "Intervals \& Geodesics"

- What is a metric?
- The Schwarzschild metric (= non-rotating black hole)
- "The orbit of a satellite" (somewhat flakey example)

I will present additional material assuming that you have read at least 17.2.

Astronomy in 1929

A loaf of raisin bread in a 1929 oven

Edwin Hubble

- 1923: Hubble measured distance to M31
- Pulsating variables
- 1926: Hubble's E, S, I galaxy classification scheme.
- 1929 Expanding Universe

Distance in millions of LY

The Expanding Universe

- Individual galaxies do not get stretched.
- Light waves do get stretched \rightarrow redshift.

$$
\begin{aligned}
& \mathrm{Z}=\frac{\lambda_{\text {new }}-\lambda_{\text {old }}}{\lambda_{\text {old }}}=\frac{\lambda_{\text {new }}}{\lambda_{\text {old }}}-1 \\
& R(t)=\frac{\lambda_{\text {old }}}{\lambda_{\text {new }}}=\frac{1}{1+z}
\end{aligned}
$$

doppler demo
applet
Redshift \rightarrow scale factor $\mathrm{R}(\mathrm{t})$ at time light was emitted.

Hubble's Distance Measurements

From The Astrophysical Journal, 1929:

A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY
AMONG EXTRA-GALACTIC NEBULAE
By Edwin Hubble

Mount Wirson Observatory, Carnegie Institution of Washington
Communicated January 17, 1929
Determinations of the motion of the sun with respect to the extragalactic nebulae have involved a K term of several hundred kilometers which appears to be variable. Explanations of this paradox have been sought in a correlation between apparent radial velocities and distances, but so far the results have not been convincing. The present paper is a re-examination of the question, based on only those nebular distances which are believed to be fairly reliable.
Distances of extra-galactic nebulae depend ultimately upon the application of absolute-luminosity criteria to involved stars whose types can
Distances of extra-galactic nebulae depend ultimately upon the application of absolute-luminosity criteria to involved stars whose types can be recognized. These include, among others, Cepheid variables, novae, and blue stars involved in emission nebulosity. Numerical values depend upon the zero point of the period-luminosity relation among Cepheids, the other criteria merely check the order of the distances. This method

Former approach for reaching large distances:

Calibrate Brightest Cluster Galaxies

- To get out to large distances \rightarrow want most luminous possible objects.

Tully-Fisher Relation

- $L-v$ correlation
- for spiral galaxies, v easily measured using H I 21 cm (radio) profiles.
- must apply $\sin i$ correction for inclination.
- infrared Tully-Fisher: IR measurements minimize scatter in L due to absorption $==>$ tighter correlation
- $F / L \rightarrow$ distance

E Galaxy Fundamental Plane The $D_{n}-\sigma_{0}$ relation

- Define:
$D_{n}=$ angular diameter at which surface brightness reaches
$I_{n}=20.75 \mathrm{~B}-\mathrm{mag} / \mathrm{arcsec}^{2}$
- Observations show that linear size (in kpc) corresponding to D_{n} is tightly correlated with σ_{0}

- $D_{n}-\sigma_{0}$ relation combines radius, surface brightness and internal velocity dispersion σ_{0}
\rightarrow The Fundamental Plane strikes again!
- Angular size $=D_{n}=($ linear size $) /$ distance
- 15% scatter in resulting distance to any one galaxy.

$\begin{aligned} & 0^{0} \\ & 0 \\ & 0^{\circ} \end{aligned}$		[CO Fig. 27.5]
	${ }^{\frac{1.0}{1.0}} \log _{10} D_{n}^{1.5}{ }^{\frac{1}{20}}$	

Surface brightness fluctuations

- Same galaxy seen at any distance will have same surface brightness.
- Flux from each star drops as $1 / D^{2}$
- But number of stars in each pixel grows as D^{2}.

But surface brightness distributions

- Each pixel contains $4 N$ stars on avg. look smoother for larger D.

Point-to-point variation is $(4 N)^{1 / 2}$ (Poisson statistics)

- Each pixel contains N stars on avg.

$$
\text { - Point-to-point variation is } N^{1 / 2}
$$ (Poisson statistics)

$$
\frac{\text { Variation }}{\text { Avg.Brightness }}=\frac{(4 N)^{1 / 2}}{4 N}=\frac{1}{2 N^{1 / 2}}
$$

$$
\frac{\text { Variation }}{\text { Avg.Brightness }}=\frac{N^{1 / 2}}{N}=\frac{1}{N^{1 / 2}}
$$

Type Ia Supernovae

Core collapse supernovae

- Massive stars ($M>8$ or10 $M_{\text {sun }}$)
- Wide range in $M \rightarrow$ wide range in L
- Not useful as "standard candles"

Type Ia supernovae

- White dwarf with $M \sim 1.4 M_{\text {sun }}$
- L can be precisely calibrated.
- Good standard candles.

Type Ia Supernovae

- Something dumps too much mass onto white dwarf.
- Increased density \rightarrow runaway heating through C + C burning
- Heating rate faster than dynamical timescale

- White dwarf cannot peacefully respond to pressure increase.
- Deflagration
- leading to detonation?

Type la Supernovae as "standard candles".

- Always happens when mass goes just past limit for heatingcooling balance.
\rightarrow Supernova always has ~ same luminosity (factor 10).
- Get distance from Flux $=\frac{L}{4 \pi r^{2}}$

Deflagration simulation

The HST Key Project to Measure H_{0}

- Measured Distances to Cepheids.
- relative to LMC distance.
- Used these to calibrate secondary distance indicators in same galaxies.

Tully-Fisher
value
$D_{n}-\sigma_{0}$
71 78
Surface Brightness Fluct. 69
Type la SNe 68
ra ± 4 ± 4
10
6
2

Average: $\mathrm{H}_{0}=71 \pm 6 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$

- Uncertainties:
- Correction for large scale flows
- Distance to LMC.

Taken to be $50 \mathrm{kpc} \pm 6.5 \%$

Distribution of published LMC distance moduli

- Radio telescope observes $\mathrm{H}_{2} \mathrm{O}$ emission line.
- Maser (stimulated emission) when there is long path through gas at same radial velocity (as seen by us).
\rightarrow Intense brightening of beam.
- Radio VLBI measurements of maser proper motion $d \theta / d t$ and v_{r}

Megamaser Galaxies

- Keplerian rotation around BH.
- Proper motion of maser knot
$=d \theta / d t=v_{\text {circ }} / D$
$\mathrm{D}=7.2 \mathrm{Mpc}$

Latest Result: $\mathrm{H}_{0}=73.8 \pm 2.6 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$

Nobel Prize
A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3^{*}
Adam G. Riess ${ }^{1.2}$, Lucas Macri ${ }^{3}$, Stefano Casertano ${ }^{2}$, Hubert Lampeit ${ }^{4}$, Henry C. Ferguson ${ }^{2}$, Alexel V. Filippenko ${ }^{5}$, Saurabh W. Jha ${ }^{6}$. Weidong Lis . Ryan Chornock ${ }^{7}$, and Jeffrey M. Silverman ${ }^{5}$

- Recalibrated Cepheid P-L relation in 3 ways:
- Distance to Megamaser galaxy NGC4258.
- Better parallaxes to MW Cepheids.
- Improved distance to LMC.
- Calibrated luminosities of 8 "nearby" SN Ia using Cepheids in same galaxies.
- Determined H_{0} from Hubble diagram for existing sample of 253 SN Ia with redshift $z \leq 0.1$

