

Tully-Fisher Relation

- $L-v$ correlation
- for spiral galaxies, v easily measured using H I 21 cm (radio) profiles.
- must apply $\sin i$ correction for inclination.
- infrared Tully-Fisher: IR measurements minimize scatter in L due to absorption $==>$ tighter correlation
- $F / L \rightarrow$ distance

E Galaxy Fundamental Plane The $D_{n}-\sigma_{0}$ relation

- Define:
$D_{n}=$ angular diameter at which surface brightness reaches
$I_{n}=20.75 \mathrm{~B}-\mathrm{mag} / \mathrm{arcsec}^{2}$
- Observations show that linear size (in kpc) corresponding to D_{n} is tightly correlated with σ_{0}

- $D_{n}-\sigma_{0}$ relation combines radius, surface brightness and internal velocity dispersion σ_{0}
\rightarrow The Fundamental Plane strikes again!
- Angular size $=D_{n}=($ linear size $) /$ distance
- 15% scatter in resulting distance to any one galaxy.
[CO Fig. 27.5]

Surface brightness fluctuations

- Same galaxy seen at any distance will have same surface brightness.
- Flux from each star drops as $1 / D^{2}$
- But number of stars in each pixel grows as D^{2}.

But surface brightness distributions

- Each pixel contains $4 N$ stars on avg. look smoother for larger D.

Point-to-point variation is $(4 N)^{1 / 2}$ (Poisson statistics)

- Each pixel contains N stars on avg.

$$
\text { - Point-to-point variation is } N^{1 / 2}
$$ (Poisson statistics)

$$
\frac{\text { Variation }}{\text { Avg.Brightness }}=\frac{(4 N)^{1 / 2}}{4 N}=\frac{1}{2 N^{1 / 2}}
$$

$$
\frac{\text { Variation }}{\text { Avg.Brightness }}=\frac{N^{1 / 2}}{N}=\frac{1}{N^{1 / 2}}
$$

Type Ia Supernovae

Core collapse supernovae

- Massive stars ($M>8$ or10 $M_{\text {sun }}$)
- Wide range in $M \rightarrow$ wide range in L
- Not useful as "standard candles"

Type Ia supernovae

- White dwarf with $M \sim 1.4 M_{\text {sun }}$
- L can be precisely calibrated.
- Good standard candles.

Type Ia Supernovae

- Something dumps too much mass onto white dwarf.
- Increased density \rightarrow runaway heating through C + C burning
- Heating rate faster than dynamical timescale

- White dwarf cannot peacefully respond to pressure increase.
- Deflagration
- leading to detonation?

Type la Supernovae as "standard candles".

- Always happens when mass goes just past limit for heatingcooling balance.
\rightarrow Supernova always has ~ same luminosity (factor 10).
- Get distance from Flux $=\frac{L}{4 \pi r^{2}}$

Deflagration simulation

The HST Key Project to Measure H_{0}

- Measured Distances to Cepheids.
- relative to LMC distance.
- Used these to calibrate secondary distance indicators in same galaxies.

Tully-Fisher	71	± 4	± 4
$D_{n}-\sigma_{0}$	78	8	10
Surface Brightness Fluct.	69	4	6
Type la SNe	68	2	2

$$
\text { Average: } \mathrm{H}_{0}=71 \pm 6 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}
$$

- Uncertainties:
- Correction for large scale flows
- Distance to LMC.

Taken to be $50 \mathrm{kpc} \pm 6.5 \%$

Distribution of published LMC distance moduli

- Radio telescope observes $\mathrm{H}_{2} \mathrm{O}$ emission line.
- Maser (stimulated emission) when there is long path through gas at same radial velocity (as seen by us).
\rightarrow Intense brightening of beam.
- Radio VLBI measurements of maser proper motion $d \theta / d t$ and v_{r}

Megamaser Galaxies

Latest Result: $\mathrm{H}_{0}=73.8 \pm 2.6 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$

Tur Astromivsical. Journal, $730: 119$ (18pp), 2011 April 1
doi:10.10880004-637×730/2/119

Nobel Prize
A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH
\checkmark THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3^{*}
Adam G. Riess ${ }^{1,2}$, Lucas Macri ${ }^{3}$, Stefano Casertano ${ }^{2}$, Hubert Lampeit ${ }^{4}$, Henry C. Ferguson ${ }^{2}$, Alexei V. Filippenko ${ }^{5}$, Saurabh W. Jha ${ }^{6}$, Weidong Lis ${ }^{5}$, Ryan Chornock ${ }^{7}$, and Jeffrey M. Silverman ${ }^{5}$

- Recalibrated Cepheid P-L relation in 3 ways:
- Distance to Megamaser galaxy NGC4258.
- Better parallaxes to MW Cepheids.
- Improved distance to LMC.
- Calibrated luminosities of 8 "nearby" SN Ia using Cepheids in same galaxies.
- Determined H_{0} from Hubble diagram for existing sample of 253 SN la with redshift $z \leq 0.1$

Distance modulus:

$$
(m-M)=5 \log (D / 10 \mathrm{pc})
$$

$$
L / F \propto D^{2}
$$

[CO pg. 62]

Cosmological Principle: Universe is homogeneous \& isotropic

Newtonian Cosmology

- Nested, expanding shells
- Infinite series, all same density $\rho(t)$
- Energy:

Kinetic + Potential $=$ Total

- Follow single shell, mass m
- $r(t)=($ Scale factor $) \times($ co-moving coordinate $)$

$$
\begin{aligned}
r(t) & =R(t) \varpi \\
\frac{d r(t)}{d t} & =v(t)=\frac{d R(t)}{d t} \varpi
\end{aligned}
$$

$$
\frac{1}{2} m\left(\frac{d R}{d t} \varpi\right)^{2}-\frac{4}{3} \pi G \rho m(R \varpi)^{2}=-\frac{1}{2} m k c^{2} \varpi^{2}
$$

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \quad \begin{aligned}
& {[29.10]} \\
& \text { Friedman eq'n: }
\end{aligned}
$$

Friedman eq'n:

Other forms of the Friedman Equation:

$$
\begin{align*}
& \text { Kinetic }+ \text { Potential }=\text { Total } \\
& \left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \\
& \text { [29.10] } \\
& \left(\frac{d R}{d t}\right)^{2}-\frac{8 \pi G \rho_{\mathrm{o}}}{3 R}=-k c^{2} \\
& \text { [29.11] } \\
& \text { - Define: } \quad R\left(t_{o}\right)=1 \\
& \text { - Conservation of mass: } \\
& R^{3}(t) \rho(t)=R^{3}\left(t_{o}\right) \rho\left(t_{o}\right)=\rho_{o} \quad \quad[29.5] \\
& \text { - Hubble's law: } \\
& v(t)=H(t) r(t) \\
& \text { But also: } \quad r(t)=R(t) \varpi \\
& v(t)=\frac{d R(t)}{d t} \varpi \\
& H(t)=\frac{v(t)}{r(t)}=\frac{\frac{d R(t)}{d t} \varpi}{R(t) \varpi}=\frac{1}{R} \frac{d R(t)}{d t} \tag{tabular}
\end{align*}
$$

The Critical Density

Homework: [CO 29.7]
= max size + lifetime of closed U.
Due Oct. 18

All Universes \sim "flat" $\left(\rho \sim \rho_{c}\right)$ at early times.

- Homework problem 29.9 will show:

$$
\begin{equation*}
\Omega(t)=\frac{\rho(t)}{\rho_{c}(t)}=1+\frac{k c^{2}}{(d R / d t)^{2}} \tag{29.194}
\end{equation*}
$$

and that $\quad d R / d t \rightarrow \infty$ as $t \rightarrow 0$
implying $\rho(t) \rightarrow \rho_{c}(t)$ as $t \rightarrow 0 \quad$ for all values of k.

Consequences:

1. For small t, it is OK to use:

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=0
$$

2. Even tiny departures from flatness $\left(\rho=\rho_{c}\right)$ at small t would have grown into impossibly large departures from flatness by present time.

Including Pressure

[pp. 1160-1161]

- For a fluid undergoing adiabatic expansion (no transfer of heat):

Homework:
[CO 29.12]
= derive acceleration eqn.
Due Oct. 18

Work done is $\quad d U=-P d V$
[CO 29.12]
$=$ derive acceleration eqn.
$\frac{d U}{d t}=-\frac{4}{3} \pi P \frac{d\left(r^{3}\right)}{d t}$
Friedman Equation (Energy)
$\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right] R^{2}=-k c^{2}$
$\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right] R^{3}=-k c^{2} R$
$u=\frac{U}{\frac{4}{3} \pi r^{3}} \quad \square \frac{d\left(r^{3} u\right)}{d t}=-P \frac{d\left(r^{3}\right)}{d t}$

$$
\rho=\frac{u}{c^{2}} \quad \square \frac{d\left(r^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(r^{3}\right)}{d t}
$$

$\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right] R^{3}=-k c^{2} R$
$\frac{d\left(R^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(R^{3}\right)}{d t}$

Acceleration Equation (Force): $\frac{d^{2} R}{d t^{2}}=-\frac{4}{3} \pi G\left(\rho+\frac{3 P}{c^{2}}\right) R$

