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¢ Mould et al. 2000, ApJ 529, 786
¢ Measured Cepheids in 18 spirals
e D<25Mpc, v<1800km/s
» also used 7 more galaxies from other sources
« Distances to Cepheids relative to LMC distance
* Used these to calibrate secondary distance indicators
e Tully-Fisher
* Fundamental plane
« Surface brightness fluctuations
* Type la supernovae




Tully-Fisher Relation

e L-v correlation

 for spiral galaxies, v easily measured using H I 21cm (radio) profiles.

* must apply sin i correction for inclination.

* infrared Tully-Fisher: IR measurements minimize scatter in L due to
absorption ==> tighter correlation

* F/L = distance
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Surface brightness fluctuations

Same galaxy seen at any distance will have same surface brightness.
* Flux from each star drops as 1/D?
* But number of stars in each pixel grows as D?.

¢ Each pixel contains 4N stars on avg.
* Point-to-point variation is (4N)!?

But surface brightness distributions ) .
(Poisson statistics)

look smoother for larger D.

Variation (4N)1/2 1
AvgBrightness =~y = 3N1/2

 Each pixel contains N stars on avg.
* Point-to-point variation is N'/?
(Poisson statistics)

Variation N1/2 1

Avg Brightness =y~ = Ni/z

4N stars per pixel

N stars per pixel

Galaxy at dist. 2D

Galaxy at dist. D

Type Ia Supernovae

Core collapse supernovae

» Massive stars (M > 8 orl0 M)

« Wide range in M =» wide range in L
¢ Not useful as “standard candles”

Type Ia supernovae

* White dwarf with M ~ 1.4 Mg,
< L can be precisely calibrated.
¢ Good standard candles.




Type Ia Supernovae

» Something dumps too much
mass onto white dwarf.

* Increased density = runaway
heating through C + C burning

* Heating rate faster than
dynamical timescale

»  White dwarf cannot peacefully
respond to pressure increase.

» Deflagration
» leading to defonation?

Type la Supernovae as “standard
candles”.

* Always happens when mass
goes just past limit for heating-
cooling balance.
=>» Supernova always has ~ same
luminosity (factor 10).

+ Get distance from Flux =

4mr
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S6Ni =» 56Co =>» bFe

Luminosity =»

SN la as Standard Candles

Light output powered by radioactive decay:

Amount of Ni determines both luminosity and opacity.
» So luminosity and fading timescale are correlated.

Observed
range in L
and fading
timescale.

After
correcting for
L - timescale
correlation.
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The HST Key Project to Measure H,

J
100
* Measured Distances to Cepheids. & ) t]
+ relative to LMC distance. £ w } ' ’
+ Used these to calibrate secondary R ke b i X
. . . . . L
distance indicators in same galaxies. |++ M l ; *
W .
40
value random systematic " B s
Tully-Fisher 71 4 +4
Dy~ G, 78 8 10
Surface Brightness Fluct. 69 4 6
Type la SNe 68 2 2

Average: H, = 71 £ 6 km/s/Mpc

* Uncertainties:
» Correction for large scale flows - I
» Distance to LMC. o e s sk

Taken to be 50 kpc * 6.5% Distribution of published

LMC distance moduli

Megamaser Galaxies

3x107 Mg, black hole

P
4 ¢ Veire

moving towards us

moving away from us

NGC 4258 4

w

+  Radio telescope observes H,O 3 | g_m_\ e "ﬂ | {
emission line. ' | RS N || | '
+  Maser (stimulated emission) °|‘-5;-‘-"'?“f;*’-‘j~m—‘-‘*-f5 *—5;0'._,‘;;)’5-;5;',"—%50
when there is long path through Line-of-sight velocity fkm 5°'}
gas at same radial velocity (as + Keplerian rotation around BH.
seen by us). Proper motion of maser knot
=> Intense brightening of beam. = dOdt = v, /D
* Radio VLBI measurements of Also use acceleration dv,/dt = v*/r
maser proper motion d&/dt « Compare r to angular size of orbit.
and v,
D=7.2 Mpc Observe




Latest Result: H,=73.8 £ 2.6 km s! Mpc'!
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+ Recalibrated Cepheid P-L relation in 3 ways: w N '51‘;”“5*5&‘ (Mag)

« Distance to Megamaser galaxy NGC4258. 5 3°
« Better parallaxes to MW Cepheids. E 135
« Improved distance to LMC. N o g
57 e
« Calibrated luminosities of 8 “nearby” SN la ERERY 4
using Cepheids in same galaxies. S ; 1 %
E 30 %
+ Determined H, from 3 g »o 0©
Hubble diagram for A = 0 . 1 3 4
existing sample of & £ .. SN Iam,’ (mag)
253 SN la with 22 constant - 2.5 log(F) >
redshift z<0.1 S
ED LR Distance modulus:
R (m-M) = 5 log(D/10 pc)
33 22 S H i L/FoD?
Redshift (CMB) ' [CO pg. 62]

Sneak Preview

The four colored lines represent models of the four possible
expansion patterns for the size of the universe over time.

supernova data

average distance between galaxies
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Redshift vs distance

R(t) = scale factor
=1/(1+2)
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As seen from a Wonder Bread raisen

The Expanding Universe (co 2.1

As seen from Utah

The Cosmological
Principle:

At any given time, the
universe is the same
everywhere.
Universe is

* Homogeneous

t> e« [sotropic

Fuluig

Cosmological Principle: Universe is homogeneous & isotropic

Newtonian Cosmology

* Energy:
Kinetic + Potential = Total
1 GM 1
m
—mv? — I = ——mk*w?
r 2 .
4
1 G— nr’pm
—m? ——3 = ——mkc’@’
r

Friedman eq’n:

Nested, expanding shells
+ Infinite series, all same density p(?)

Follow single shell, mass m

r(t) = (Scale factor) x (co-moving coordinate)
rt) =RM)@
dr(t) —v(t) = dR(t) o
dt dt

Define:
Why???
Cosmological principle =
For bound universe, each nested shell must
simultaneously have KE=»0

Total Energy = 7%mkczw2

E= —gnGmezw2 cmm’




Other forms of the Friedman Equation:

Kinetic + Potential = Total

-[29.10]
1 drRY 8 s )
- R* =—kc

—— | —=m
R dt 3
(dez 8nGp, 2
G _OMPo e
dt 3R
[Hz —gnGp)Rz =—kc®

*  Define:

R(t)=1

*  Conservation of mass:

RWp() = R(1,)p(t,) = p,
* Hubble’s law:
V(1) = H(1) r(1)
Butalso: r(®) =R() @
_dR(@)
v(t) = 7 @
dR(t)

H =20~ _a ¥ _ 1 dR()
" Ht) R(@ R dt

The Critical Density

Kinetic + Potential = Total

-[29,10]
1drRY 8 s h
R° =—kc

~®) 26
R dt 3 P
2
R _StGp,
dt 3R
(Hz fgnGp)Rz =—kc?

E =——mkc’@*
2

. 1 22
Energy per unit mass = — 5 kc'w

k> 0 =» negative E, shells will collapse back

k=0 => E =0, each shell has exactly escape
velocity.

k <0 =>» positive E, shells expand forever

Critical density
k=0 >H’ =§11Gpc
3H(t)
)= [29.15)
=2 X
Peo = 1.88 x1026 12 kg m
p() P, 5
Q) = o ) Q,= o 12910




The Critical Density

Kinetic + Potential = Total

B4

dR

2
(7] _@ = —kc?
dt 3R

inGpJRZ =—kc?

E= 1 mkc*@?
2

E . _ 1., »
nergy per unit mass = — 5 ke @

k>0 =>» negative E, shells will collapse back
k=0 => E =0, each shell has exactly escape

velocity.
For k=0: T Pl k <0 =» positive E, shells expand forever
any oGP
( di ) SRR ... .
Critical density
R — 8nGpc,0 _ 2 _ 1
J 87 Gp.p (" _ 2 8 =H, =~
VR dR = #],,,f k=0 S H*="nGp 3 2
0 - 0
2 2 3H? (1)
= ()= -[29.151
R:(ET 87Gp.o , | P0="6
2 3 Peo = 1.88 x1026 4 kg m3
(3)2,’.’4 ( ' 2/3
=15 Py p() P 2018
2 r,,) Qt)y=—+= Q =— (29181
0
Homework: [CO 29.7]
=Dz1eax0[s;|[.z<-;;; lifetime of closed U. The Critical Density
E=—~mk*a’
Kinetic + Potential = Total 2m cw
1
L dRY 8 Energy per unit mass = —Ekczw2
———| -=nGp |R* =—kc’
R dt 3
dRV: 8 Gp k> 0 =>» negative E, shells will collapse back
(7j _3TO =—ke? k=0 => E =0, each shell has exactly escape
d velocity.
k <0 =>» positive E, shells expand forever
8
7 Q=05
6 » 2 [Critical density
R e
%:: 201 2) (1, k=0 -)szgnGp 3 ot
2 - -2 3H(1)
1) = [29.15]
. =20 X
o1 7 3 A Peo = 1.88 X102 12 kg m’3
For Q#1, see ©
parametric solutions Q) = p(s Q = Po 129.18]
in CO [29.32-29.39] © p. (1) ° o,




All Universes ~ “flat” (p ~ p,) at early times.

Homework problem 29.9 will show:

t ke
Q(t): ,0() =1+ < 2
p.(t) (dR/dt) (29.194)
H k:
(0 26.9] and that  dR/dt — o0 as £ — 0
Due Oct. 18 . .
implying p(1) - p,(t) ast — 0 for all values of k.
Consequences:
1. Forsmall ¢, it is OK to use: Tt
2 —~
(ld—Rj —§11:Gp R =0 &
R dt 3 5
g
2. Even tiny departures from w
Q
flatness (o = p,) at small ¢ E
would have grown into 0
impossibly large departures
from flatness by present
time.
Including Pressure
[pp. 1160-1161]
» For a fluid undergoing adiabatic expansion (no transfer of heat):
H i Work done is dU =-PdV
omework:
[CO 29.12] dUs il odlr)
= derive acceleration eqn. R T )
Due Oct 18 at T L
U ‘ d(riu) dir?)
U= s
_%7“"‘ di 4 dt
. . u d(r’p) P d(r?)
Friedman Equation (Energy) p== - £
c” dt ¢ dt
1 dR\? 8 £ R .
E Z = E;‘)TGP R = =kc CI(R,O) _ _E(I(R-‘)
dr ¢ dt
(l d_R)z 8 G 3 2
R di __ER'DR:_kCR
Time derivative + algebra
. . 1*R 4
Acceleration Equation (Force): (dﬂ =—37G (p + l‘;) R
2 ; )




