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• Mould et al. 2000, ApJ 529, 786

• Measured Cepheids in 18 spirals
• D < 25 Mpc,    v < 1800 km/s

• also used 7 more galaxies from other sources

• Distances to Cepheids relative to LMC distance

• Used these to calibrate secondary distance indicators
• Tully-Fisher

• Fundamental plane

• Surface brightness fluctuations

• Type Ia supernovae    

Hubble Flow

Grav. Lens Time Delay
Sunyaev-Zel’dovich
Type Ia Supernovae 

Globular Cluster Lum. Funct.
Surface Brightness Fluctuations
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Tully-Fisher Relation

• L-v correlation 

• for spiral galaxies, v easily measured using H I 21cm (radio) profiles.

• must apply sin i correction for inclination.

• infrared Tully-Fisher: IR measurements minimize scatter in L due to 
absorption ==> tighter correlation

• F/L distance

E Galaxy Fundamental Plane
The Dn - 0 relation

• Define:

Dn = angular diameter at which surface 
brightness reaches                                       
In = 20.75 B-mag/arcsec2

• Observations show that linear size (in kpc) 
corresponding to Dn is tightly correlated with
0

• Dn - 0 relation combines radius, surface 
brightness and internal velocity dispersion 
0

 The Fundamental Plane 
strikes again!

• Angular size = Dn = (linear size)/distance

• 15% scatter in resulting distance to any one 
galaxy.

Coma

Virgo

Lo
g 1

0
 0

Log10 Dn

[CO Fig. 27.5]
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• Same galaxy seen at any distance will have same surface brightness.
• Flux from each star drops as 1/D2

• But number of stars in each pixel grows as D2.

• But surface brightness distributions 
look smoother for larger D.

Surface brightness fluctuations



D
D

2D

• Each pixel contains N stars on avg.
• Point-to-point  variation is N1/2

(Poisson statistics)

Variation
Avg.Brightness = 

ேభ/మ

ே
= 

ଵ

ேభ/మ

• Each pixel contains 4N stars on avg.
• Point-to-point  variation is (4N)1/2

(Poisson statistics)

Variation
Avg.Brightness = 

ሺସேሻభ/మ

ସே
= 

ଵ

ଶேభ/మ

N stars per pixel
4N stars per pixel

Galaxy at dist. D Galaxy at dist. 2D

Type Ia Supernovae

Core collapse supernovae 
• Massive stars (M > 8 or10 Msun)
• Wide range in M wide range in L
• Not useful as “standard candles”

Type Ia supernovae 
• White dwarf with M ~ 1.4 Msun

• L can be precisely calibrated.
• Good standard candles.
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Type Ia Supernovae
• Something dumps too much 

mass onto white dwarf.
• Increased density  runaway 

heating through C + C   burning
• Heating rate faster than 

dynamical timescale
• White dwarf cannot peacefully 

respond to pressure increase.
• Deflagration

• leading to detonation?

Type Ia Supernovae  as “standard 
candles”.

• Always happens when mass 
goes just past limit for heating-
cooling balance.
 Supernova always has ~ same 
luminosity (factor 10).

• Get distance from  Flux = L
4r2

white dwarf at 
center of 

accretion disk

Deflagration 
simulation 

Roche lobe 
overflow?
Merger?

SN Ia as Standard Candles

Light output powered by radioactive decay:

56Ni  56Co  56Fe

Amount of Ni determines both luminosity and opacity.

• So luminosity and fading timescale are correlated.

Observed 
range in L
and fading 
timescale.

After 
correcting for 
L - timescale 
correlation.

Lu
m

in
os

ity
 

Days since peak L 
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The HST Key Project to Measure H0

Distribution of published 
LMC distance moduli

x

10% in distance 

• Measured Distances to Cepheids. 
• relative to LMC distance.

• Used these to calibrate secondary 
distance indicators in same galaxies.

value    random  systematic
Tully-Fisher                         71         4             4
Dn - 0 78           8             10
Surface Brightness Fluct.  69          4              6
Type Ia SNe         68           2             2

Average:  H0 =  71  6 km/s/Mpc
• Uncertainties:

• Correction for large scale flows
• Distance to LMC. 

Taken to be 50 kpc   6.5%

Megamaser Galaxies

NGC 4258

moving towards us

moving away from us
3x107 M black hole

• Radio telescope observes H2O
emission line.

• Maser (stimulated emission) 
when there is long path through 
gas at same radial velocity (as 
seen by us).

 Intense brightening of beam.

• Radio VLBI measurements of 
maser proper motion d/dt
and  vr

D = 7.2 Mpc

• Keplerian rotation around BH.

• Proper motion of maser knot

=  d/dt =  vcirc / D
• Also use acceleration dvrad/dt = v2/r

• Compare r to angular size of orbit.

vcirc

vcirc
vcirc

Observer

vcirc

vrad

r
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Latest  Result: H0 = 73.8 ± 2.6 km s-1 Mpc-1

• Recalibrated Cepheid P-L relation in 3 ways:
• Distance to Megamaser galaxy NGC4258.

• Better parallaxes to MW Cepheids.

• Improved distance to LMC.

• Calibrated luminosities of  8 “nearby” SN Ia
using Cepheids in same galaxies.

• Determined H0 from 
Hubble diagram for 
existing sample of 
253 SN Ia with 
redshift  z  0.1

Distance modulus: 

(m-M) = 5 log(D/10 pc)

L / F  D 2
[CO pg. 62]

5 
lo

g 
(D

) 


constant - 2.5 log(F) 

5 
lo

g 
[D

/(
L

1/
2 )

] 


z = 0.007

Nobel Prize

Sneak Preview
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The Expanding Universe

As seen from a Wonder Bread raisen                           As seen from Utah

The Cosmological 
Principle:
At any given time, the 
universe is the same 
everywhere.
Universe is
• Homogeneous
• Isotropic

[CO 29.1]

Redshift vs distance

Now

1

2
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4

4

1

0

R
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) 


t 

R(t) vs. t

R
(t

)

R(t) = scale factor
= 1/(1+z)

Cosmological Principle: Universe is homogeneous & isotropic

Newtonian Cosmology

• Energy:

Kinetic  +  Potential  =   Total

• Nested, expanding shells
• Infinite series, all same density (t)

• Follow single shell, mass m

• r(t) = (Scale factor) x (co-moving coordinate)

r(t) = R(t)

• Define:       Total Energy   =
Why???
Cosmological principle 

For bound universe, each nested shell must
simultaneously have KE0
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Other forms of the Friedman Equation:

Kinetic  +  Potential  =   Total
• Define:          R(to) = 1
• Conservation of mass:

R3(t)(t) = R3(to)(to) = o

• Hubble’s law:

v(t) = H(t) r(t) 

But also:     r(t) = R(t) 
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The Critical Density

Kinetic  +  Potential  =   Total
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[29.10] Energy per unit mass =

k > 0  negative E, shells will collapse back
k = 0  E = 0, each shell has exactly escape 

velocity.
k < 0  positive E, shells expand forever

Critical density 

k = 0   

c,o = 1.88 x10-26 h2 kg m-3
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The Critical Density
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[29.10] Energy per unit mass =

k > 0  negative E, shells will collapse back
k = 0  E = 0, each shell has exactly escape 

velocity.
k < 0  positive E, shells expand forever
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Kinetic  +  Potential  =   Total

For k=0:
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[29.10] Energy per unit mass =

k > 0  negative E, shells will collapse back
k = 0  E = 0, each shell has exactly escape 

velocity.
k < 0  positive E, shells expand forever
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[Fig. 29.5]
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For 1, see 
parametric solutions 
in CO [29.32-29.39]

Kinetic  +  Potential  =   Total

Homework:    [CO 29.7]  
= max size + lifetime of closed U.
Due Oct. 18
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All Universes ~ “flat”  ( ~ c) at early times.

• Homework problem 29.9 will show:

and that

implying                                                        

R
(t

)

for all values of k.

dR/dt  as t  0

(t)  c(t) as t  0

   
  2

2

)/(
1

dtdR

kc

t

t
t

c





Homework: 
[CO 29.9]  
Due Oct. 18

Consequences:
1. For small t, it is OK to use:

2. Even tiny departures from 
flatness ( = c) at small t
would  have grown into 
impossibly large departures 
from flatness by present 
time.

(29.194)

0ρπ
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dt

dR

R

Including Pressure 
[pp. 1160-1161]

• For a fluid undergoing adiabatic expansion (no transfer of heat):
Work done is dU = -PdV

R
3

Time derivative + algebra

Acceleration Equation (Force): 

Friedman Equation (Energy) 

Homework:
[CO 29.12]                          
= derive acceleration eqn.
Due Oct. 18


