Curved Spaces \& the Robertson-Walker Metric

$$
(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \pi}{\sqrt{1-k \sigma^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right] \begin{aligned}
& {[\mathrm{CO}] \text { notation, }} \\
& \text { with } c^{2}
\end{aligned}
$$

- R-W metric: most general solution for universe obeying Cosmological Principle.
- Homogeneous \& Isotropic
- Smooth distribution of matter.
- Same everywhere at any given time.
- The non-zero components of the Einstein equation then reduce to
$\dot{R}=\frac{d R}{d t}$
etc.
$\dot{R}^{2}+k=\frac{8 \pi G}{3} \rho R^{2}$
\longleftarrow Friedmann eqn.[29.10]

$$
\dot{p} R^{3}=\frac{d}{d t}\left\{R^{3}[\rho+p]\right\}
$$

$$
\frac{d}{d R}\left(\rho R^{3}\right)=-3 p R^{2} \quad \leftarrow \text { Form of fluid eqn.[29.50] }
$$

Stolen from Weinberg,
"Gravitation \& Cosmology"

Curved Spaces \& the Robertson-Walker Metric

$$
(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \sigma}{\sqrt{1-k \sigma^{2}}}\right)^{2}+(\sigma d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right] \begin{aligned}
& {[\mathrm{CO}] \text { notation, }} \\
& \text { with } c^{2}
\end{aligned}
$$

- R-W metric: most general solution for universe obeying Cosmological Principle.
- Homogeneous \& Isotropic
- Smooth distribution of matter.
- Same everywhere at any given time.
- Curvature

$$
\begin{aligned}
K & \equiv \frac{k}{R^{2}(t)} \\
k & \equiv \frac{1}{\mathfrak{R}_{0}^{2}} \quad \mathfrak{R}_{0}=\begin{array}{r}
\text { Present radius of } \\
\text { curvature (meters) }
\end{array}
\end{aligned}
$$

- Can be found from local measurements
- By bug on sphere

Geometry of a 2D Spherical Surface

Geometry of a 2D Spherical Surface

$$
\begin{array}{rlr}
r & =R \sin \theta \\
d r & =R \cos \theta d \theta \\
R d \theta=\frac{d r}{\cos \theta} & =\frac{R d r}{\sqrt{R^{2}-r^{2}}}=\frac{d r}{\sqrt{1-r^{2} / R^{2}}} \quad(d \ell)^{2}=(d D)^{2}+(r d \phi)^{2}=(R d \theta)^{2}+(r d \phi)^{2} \\
& \quad(d \ell)^{2}=\left(\frac{d r}{\sqrt{1-r^{2} / R^{2}}}\right)^{2}+(r d \phi)^{2} \\
& \quad \frac{1}{R^{2}} \quad(d \ell)^{2}=\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}+(r d \phi)^{2}
\end{array}
$$

To get R-W metric:

$$
(d \ell)^{2}=\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
$$

- Add time

$$
\begin{aligned}
& (d s)^{2}=(c d t)^{2}-\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2} \\
& (d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \varpi^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]
\end{aligned}
$$

where $r(t)=R(t) \varpi \quad$ and $\quad K(t) \equiv \frac{k}{R^{2}(t)}$

Dynamics of a 3D Surface (our Universe)

 in an Expanding 4D Space$$
\begin{aligned}
& (d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \varpi^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right] \\
& r(t)=R(t) \varpi \\
& K(t) \equiv \frac{k}{R^{2}(t)} \\
& \left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \\
& \text { - Dynamics and curvature both due to mass- } \\
& \text { energy density. } \\
& \text { - For Friedmann Eqn without Dark Energy: }
\end{aligned}
$$

Sneak Preview

Accelerating Universe

- Hubble's law:

$$
v(t)=H(t) r(t)
$$

- Lookback time \rightarrow for more distant objects, we measure $H(t)$ at earlier t.

- If gravity constantly slows expansion, expect larger H at earlier t.
- Late 1990s: Type Ia SNe showed $H(t)$ is currently increasing with time.

Flat Universe

- CMB fluctuations
- 1 part in 10^{5} amplitude
- COBE: angular resolution too low
- WMAP has higher angular resolution.
- Fluctuations have known physical size.
- Angular size depends on geometry of universe.

COBE results
Blue $=0^{\circ} \mathrm{K}$
Red $=4^{\circ} \mathrm{K}$

Blue $=2.724^{\circ} \mathrm{K}$
Red $=2.732^{\circ} \mathrm{K}$
Dipole Anistropy
\rightarrow motion of Sun
through Universe.
After removing dipole
Red - blue = $0.0002^{\circ} \mathrm{K}$

The Cosmological Constant

Einstein's Eqn:

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=-8 \pi G T_{\mu \nu}
$$

One last possible term. $\Lambda=$ arbitrary constant.

The "complete"
Friedmann Eqn:

$$
\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}
$$

Λ acts as outward force:

$$
\text { Newtonian version: } \quad \frac{1}{2} m v^{2}-G \frac{M_{r} m}{r}-\frac{1}{6} \Lambda m c^{2} r^{2}=-\frac{1}{2} m k c^{2} \varpi^{2}
$$

Define a potential:

$$
U_{\Lambda} \equiv-\frac{1}{6} \Lambda m c^{2} r^{2} \quad \mathbf{F}_{\Lambda}=-\frac{\partial U_{\Lambda}}{\partial r} \hat{\mathbf{r}}=\frac{1}{3} \Lambda m c^{2} r \hat{\mathbf{r}}
$$

The acceleration eqn: $\quad \frac{d^{2} R}{d t^{2}}=\left\{-\frac{4}{3} \pi G\left[\rho_{m}+\rho_{\mathrm{rel}}+\frac{3\left(P_{m}+P_{\mathrm{rel}}\right)}{c^{2}}\right]+\frac{1}{3} \Lambda c^{2}\right\} R$

Equation of state [Co pp. 1161-1162]

- Relation between P, R and ρ

Define:

$$
\rho=\rho_{o} R^{-3(1+w)}
$$

$\begin{array}{ll}\text { Matter: } w=0 & \rho \propto R^{-3} \\ \text { Radiation: } w=1 / 3 & \rho \propto R^{-4}\end{array}$
Cosm. Const: $w=-1 \quad \rho \propto R^{0}$

$$
\text { [29.52] } \quad P=w u=w \rho c^{2} \quad P \propto \text { energy density of fluid }
$$

Cosmological Constant as a "Negative Pressure"

$$
\begin{aligned}
& \begin{array}{l}
\text { Friedmann Eq. with } \\
\text { smological Constant: }
\end{array} \quad\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2} \\
& \rho_{\Lambda} \equiv \frac{\Lambda c^{2}}{8 \pi G}=\text { constant }=\rho_{\Lambda, 0} \Rightarrow\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m l}+\rho_{\mathrm{rel}}+\rho_{\Lambda}\right)\right] R^{2}=-k c^{2} \quad[29.114] \\
& \text { Acceleration Eqn: } \\
& \text { [29.111] } \frac{d\left(R^{3} \rho\right)}{d t}=-\frac{P}{c^{2}} \frac{d\left(R^{3}\right)}{d t} \Rightarrow \frac{d^{2} R}{d t^{2}}=\left\{-\frac{4}{3} \pi G\left[\rho_{m}+\rho_{\mathrm{rel}}+\frac{3\left(P_{m}+P_{\mathrm{rel}}\right)}{c^{2}}\right]+\frac{1}{3} \Lambda c^{2}\right\} R \\
& \begin{array}{l}
\text { Negative pressure (29.115) } \\
\qquad P_{\Lambda}=-\rho_{\Lambda} c^{2} \quad \Rightarrow \quad \frac{d^{2} R}{d t^{2}}=\left\{-\frac{4}{3} \pi G\left[\rho_{m}+\rho_{\text {rel }}+\rho_{\Lambda}+\frac{0\left(\not P_{m}+P_{r e l}+c^{2}+P_{\Lambda}\right)}{c^{2}}\right]\right\} R
\end{array} \\
& =-\frac{4}{3} \pi G\left[\rho_{m}+2 \rho_{\text {rel }}-2 \rho_{A}\right] R=-\frac{H^{2}}{2 \rho_{c}}\left[\rho_{m}+2 \rho_{\text {rel }}-2 \rho_{A}\right] R \\
& \text { Psst... is it a constant? Is } w=-1 \text { ? } \\
& \text { using } \frac{8 \pi G \rho_{\mathrm{c}}}{3}=H^{2}
\end{aligned}
$$

A slight renaming....

$$
\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2}
$$

A slight renaming....

$$
\begin{aligned}
& {\left[\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho-\frac{1}{3} \Lambda c^{2}\right] R^{2}=-k c^{2} \quad \boxed{[29.108]}} \\
& \rho_{\Lambda} \equiv \frac{\Lambda c^{2}}{8 \pi G}=\text { constant }=\rho_{\Lambda, 0} \\
& \left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{r e l}+\rho_{\Lambda}\right)\right) R^{2}=-k c^{2} \\
& \Omega_{\Lambda}=\frac{\rho_{\Lambda}}{\rho_{c}}=\frac{\Lambda c^{2}}{3 H^{2}} \\
& \Omega \equiv \Omega_{m}+\Omega_{\mathrm{rel}}+\Omega_{\Lambda} \\
& \left(H^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2} \longmapsto \begin{array}{l}
H^{2}(1-\Omega) R^{2}=-k c^{2} \\
H^{2}(1-\Omega)=-k c^{2}
\end{array} \\
& \text { Friedmann Eqn } \\
& H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2} \\
& \text { [29.121] }
\end{aligned}
$$

$$
H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2} \quad[29.121]
$$

The basic WMAP result: $k=0$
$\Rightarrow\left[\Omega_{0}\right]_{\text {WMAP }}=1.02 \pm 0.02$
$\Omega_{0}=\Omega_{m, 0}+\Omega_{\mathrm{rcl}, 0}+\Omega_{\Lambda .0}=1$
$\left[\left.\Omega_{m, 0}\right|_{\text {wMAP }}=0.27 \pm 0.04\right.$.

$$
\Omega_{\mathrm{rel} .0}=8.24 \times 10^{-5}
$$

$$
\left|\Omega_{A, 0}\right|_{\mathrm{WMAP}}=0.73 \pm 0.04,
$$

Friedmann Eqn:
$\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{r e l}+\rho_{\Lambda}\right)\right) R^{2}=-k c^{2}$
Solution for $k=0$:

$$
t=\sqrt{\frac{3}{8 \pi G}} \int_{0}^{R} \frac{R^{\prime} d R^{\prime}}{\sqrt{\rho_{m, 0} R^{\prime}+\rho_{\mathrm{rel}, 0}+\rho_{\Lambda, 0} R^{\prime 4}}}
$$

open vs. Closed: Some Universes
$\left(H^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=-k c^{2}$
$H^{2}(1-\Omega) R^{2}=-k c^{2}$
$H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2}$

$$
\begin{aligned}
& \left(1-\Omega_{0}\right)=-k c^{2} \\
& k=0 \rightarrow \Omega_{0}=\Omega_{m, 0}+\tilde{\nearrow}_{\mathrm{rcl}, 0}^{0}+\Omega_{\Lambda .0}=1
\end{aligned}
$$

Accelerating vs. Decelerating
Deceleration parameter: $q(t)=-\frac{R(t)\left[d^{2} R(t) / d t^{2}\right]}{[d R(t) / d t]^{2}}$

+ accel. eqn:

$$
\frac{d^{2} R}{d t^{2}}=-\frac{H^{2}}{2 \rho_{c}}\left[\rho_{m}+2 \rho_{\text {rel }}-2 \rho_{A}\right] R
$$

(Camouflaged accel. eqn.)

$$
q(t)=\frac{1}{2} \Omega_{m}(t)+\stackrel{\hbar_{\mathrm{rel}}}{0}(t)-\Omega_{\Lambda}(t)
$$

Expands Forever vs. Recollapses:

$$
\text { Does } d R / d t \text { ever }=0 ? \quad \text { See [29.135] }
$$

