Angular Diameters

RW metric:

$(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \omega}{\sqrt{1-k \omega^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]$
What is angular size of galaxy at co-moving distance ϖ ?

$$
d t=d \varpi=d \phi=0
$$

Galaxy's diameter is proper distance linear diameter:

Using ϖ coordinate

$$
D=\int \sqrt{\cdot(d s)^{2}}=R\left(t_{e}\right) \tilde{\omega}_{e} \theta
$$

\rightarrow Looks like

$$
\begin{array}{rlrl}
\lambda \theta & =\frac{D}{R(t)} \tilde{\omega} & \text { but must use } R\left(t_{e}\right) \\
& =\frac{D(1+z)}{\tilde{\omega}} \quad \text { usinc } \quad 1+z=\frac{1}{R\left(t_{e}\right)} \\
\theta & =\frac{D(1+z)^{2}}{d_{L}} \quad d_{A}=\frac{d_{L}}{(1+z)^{2}}=\frac{\sigma}{1+z}
\end{array}
$$ regardless of

$\theta=\frac{D(1+z)^{2}}{d_{L}} \quad$ More angular diameter

In practice
(because of that @\#\$\% cosmological constant)

$$
\frac{c \theta}{H_{0} D}=\frac{(1+z)}{S(z)}
$$

For $\Lambda=0$:

$$
\theta=\frac{H_{0} D}{c} \frac{q_{0}^{2}(1+z)^{2}}{q_{0} z-\left(1-q_{0}\right)\left(\sqrt{1+2 q_{0} z}-1\right)}
$$

Surprise!
Even for flat, $\Lambda=0$ universe, θ first decreases but then increases with increasing z .

Homework 5 Question 1

Circle in a 2D space:

$$
\mathfrak{R}^{2}=x^{2}+y^{2}
$$

$$
d \ell^{2}=d x^{2}+d y^{2}
$$

Sphere in a 3D space:

$$
\mathfrak{R}^{2}=x^{2}+y^{2}+z^{2} \quad d \ell^{2}=d x^{2}+d y^{2}+d z^{2}
$$

3-Sphere in a 4D space:

$$
\mathfrak{R}^{2}=x^{2}+y^{2}+z^{2}+w^{2} \quad d \ell^{2}=d x^{2}+d y^{2}+d z^{2}+d w^{2}
$$

But we (mysteriously) had to use:

$$
\begin{aligned}
r^{2}=x^{2}+y^{2}+z^{2} \quad d \ell^{2} & =d x^{2}+d y^{2}+d z^{2} \\
& =d r^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}
\end{aligned}
$$

... to derive the R-W metric:
$(d s)^{2}=(c d t)^{2}-R^{2}(t)\left[\left(\frac{d \varpi}{\sqrt{1-k \omega^{2}}}\right)^{2}+(\varpi d \theta)^{2}+(\varpi \sin \theta d \phi)^{2}\right]$

All Universes \sim "flat" $\left(\rho \sim \rho_{c}\right)$ at early times.

- Homework problem 29.9 showed:

$$
\begin{equation*}
\Omega(t)=\frac{\rho(t)}{\rho_{c}(t)}=1+\frac{k c^{2}}{(d R / d t)^{2}} \tag{29.194}
\end{equation*}
$$

and that $\quad d R / d t \rightarrow \infty$ as $t \rightarrow 0$
implying $\rho(t) \rightarrow \rho_{c}(t)$ as $t \rightarrow 0 \quad$ for all values of k.

Consequences:

For small t, it is OK to use:

$$
\left(\left(\frac{1}{R} \frac{d R}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right) R^{2}=0
$$

$$
\text { To show dr/dt } \rightarrow \infty
$$

$$
\begin{aligned}
& \left(\frac{d R}{d t}\right)^{2}=\frac{8 \pi G \rho_{0}}{3 R}-k c^{2} \\
& \quad \text { and } \mathrm{R} \rightarrow 0 \text { as } \mathrm{t} \rightarrow 0
\end{aligned}
$$

The rest of these slides will probably wait until after Midterm 2

The Planck Time

- Dimensional arguments
- Planck time $t_{P}=\sqrt{\frac{\hbar G}{c^{5}}} \quad=5 \times 10^{-44} \mathrm{~s}$
- Planck mass $m_{P}=\sqrt{\frac{\hbar c}{G}}=2 \times 10^{-8} \mathrm{~kg}$
- Planck length $\quad \ell_{P}=\sqrt{\frac{\hbar G}{c^{3}}}=2 \times 10^{-35} \mathrm{~m}=c t_{P}$
$\Delta t \Delta E=\hbar$
- Before this, everything fuzzed out by uncertainty principle.
$\Delta x \Delta p=\hbar$
$\Delta p c=\Delta E=\frac{G M^{2}}{\Delta x}$

Some Problems for Friedmann-Robertson-Walker Universes

- Causality and the particle horizon
- Flatness
- Absence of magnetic monopoles
- Absence of "Domain Walls"

The Horizon Problem

The Particle Horizon:

For $\mathrm{k}=0, \Lambda=0, \Omega=1$ example:

- Radiation era: $R(t) \sim t^{1 / 2} \quad d_{h}(t)=2 c t \quad \varpi_{h}(t)=d_{h}(t) / R(t) \sim t^{1 / 2}$
- Matter Era: $\quad R(t) \sim t^{2 / 3} \quad d_{h}(t)=3 c t \quad w_{h}(t)=d_{h}(t) / R(t) \sim t^{1 / 3}$

As time passes, we can see larger and larger fraction of universe.
causally connected fraction of universe is constantly growing.

The Horizon Problem

- Cosmic Microwave Background is smooth to about 1 part in 10^{5}
- Yet regions in causal contact at time of decoupling should subtend only $\sim 2^{\circ}$ on sky.

Blue $=0^{\circ} \mathrm{K}$
Red $=4^{\circ} \mathrm{K}$

- How do regions 180° apart know about each other?

Blue $=2.724^{\circ} \mathrm{K}$
Red $=2.732^{\circ} \mathrm{K}$
Dipole Anistropy
~ 1 part in 300

Fig 30.3

The Flatness Problem

- Tiny departures from $\left(\rho=\rho_{c}\right)$ at small t (large z) grow into much larger departures than are observed.
- Ω_{0} close to 1 at present time.
- But this requires incredible precision at start $(\mathrm{t}=0)$.
- $\rightarrow \Omega_{0}$ exactly $=1$

