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Angular Diameters

Galaxy’s diameter is proper distance linear diameter:  

but must use R(te)

Using  coordinate          
 Looks like 
Euclidean result, 
regardless of 
curvature of space.



R(te)

RW metric:

What is angular size of galaxy at co-moving distance ?

dt = d = d = 0
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More angular diameter

In practice
(because of that @#$% cosmological constant)

[CO Fig. 29.30]
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Surprise!
Even for flat,  = 0 universe,  first decreases 
but then increases with increasing z.

Gal.1 Gal.2 Gal.3

Gal.3 at large 
lookback time
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Kellerman (1993)                                               Gurvits (1994) 

VLBI measurements of compact radio sources:

Gurvits, Kellerman & 
Frey (1999)

Authors say 
“consistent with”             
qo = 0.5,         no 

evolution.
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Ned Wright’s Javascript Cosmology Calculator
http://www.astro.ucla.edu/~wright/CosmoCalc.html

same as “proper distance”
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The Concordance 
Cosmology

= CDM = LCDM

Dark 
Energy

Cold
Dark 

Matter

Concordance between:
• CMB fluctuations.
• Supernovae.
• Galaxy cluster growth rate

• Globular cluster ages
• Power spectrum of large-scale 
structure.

• H0 : HST key project vs. WMAP.
• Baryon density: 

primordial nucleosynthesis 
vs. WMAP.

• m from baryon  (dark matter /baryon)

The Concordance 
Cosmology

= CDM = LCDM

Dark 
Energy

Cold
Dark 

Matter
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Definitions, results, etc. Physics
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Per unit mass:
K.E. + potential E.       =   Total Energy
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Temp. of radiation field:
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Homework 5 Question 1

22222 dwdzdydxd 22222 wzyx 

222 yx 

2222 zyx  2222 dzdydxd 

222 dydxd 

2222 zyxr 
   222 sin  drdrdr 

2222 dzdydxd 

r

Circle in a 2D space:

Sphere in a 3D space:

3-Sphere in a 4D space:

dx
dy

dl

But we (mysteriously) had to use:

… to derive the R-W metric: 
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All Universes ~ “flat”  ( ~ c) at early times.

• Homework problem 29.9 showed:

and that

implying                                                        

R
(t

)

for all values of k.

dR/dt  as t  0

(t)  c(t) as t  0
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Consequences:
For small t, it is OK to use:
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To show dr/dt  

and R  0 as t  0
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High density                                                                Low density

Planck 
time

Inflation

Formation
of H, He, Li

Galaxy 
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Now

The History of the Universe
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The rest of these slides will probably wait until after 
Midterm 2

The Planck Time

• Dimensional arguments

• Planck time

• Planck mass

• Planck length

• Before this, everything fuzzed out by uncertainty principle.

= 5 x 10-44 s

= 2 x 10-8 kg

= 2 x 10-35 m3

5

c

G

G

c
m

c

G
t

P

P

P














Time 

R
(t

)


0
0

[CO pgs 1233-1234]

Pct

x

GM
Ecp

px

Et







2







7

Some Problems for 
Friedmann-Robertson-Walker Universes

• Causality and the particle horizon 

• Flatness

• Absence of magnetic monopoles

• Absence of “Domain Walls”

The Horizon Problem

For k = 0,  = 0,  = 1 example:

• Radiation era:    R(t) ~ t1/2 dh(t) = 2ct      h(t) = dh(t)/R(t) ~ t1/2

• Matter Era:        R(t) ~ t2/3   dh(t) = 3ct      h(t) = dh(t)/R(t) ~ t1/3

As time passes, we can see larger and larger fraction of universe.

Fig. 29.22 
Proper distance from 
Earth to particle 
horizon as function of 
time, including .

 causally connected fraction of universe is constantly growing.

The Particle Horizon:
t/tH

d h
/(

ct
H
) 

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• Cosmic Microwave Background is smooth 
to about 1 part in 105

• Yet regions in causal contact at time of decoupling 
should subtend only ~2o on sky.

• How do regions 180o apart know about each other? 

. .

Blue = 0oK
Red  = 4oK

Blue = 2.724oK
Red  = 2.732oK

Dipole Anistropy
~ 1 part in 300

After removing 
dipole

Red – blue = 0.0002oK
~ 1 part in 105

Fig 30.3

The Horizon Problem

• Tiny departures from ( = c) at small t (large z) grow into much larger departures 
than are observed.

• 0 close to 1 at present time.
• But this requires incredible precision at start (t = 0). 

•  0 exactly = 1
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The Flatness Problem
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Empty expanding U. is 
not flat (k = 0).

Flat  these add up 
to zero.
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