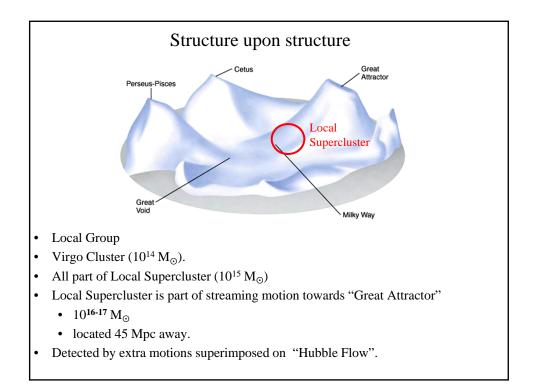
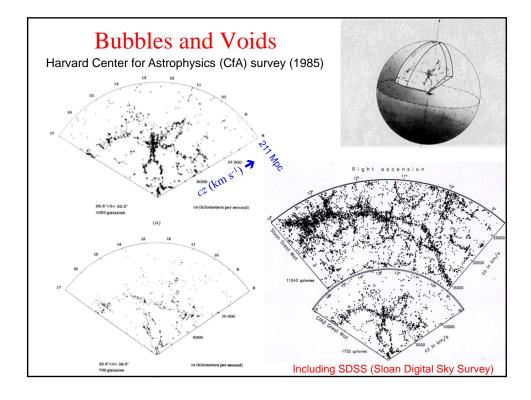
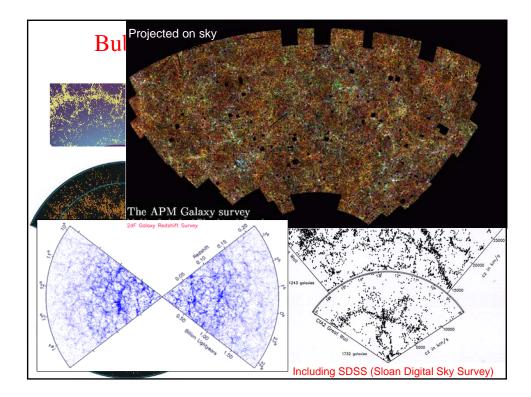
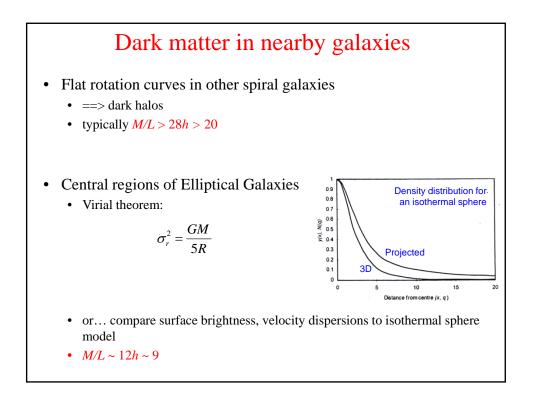

The Sylla	bus:	The agenda:			
Nov 8,10	The Structure of the Universe & Evolution of Galaxies [27.3] Clusters of galaxies [28.4] Using quasars to probe the universe (gravitational lenses) What is dark matter?	 Present-day structure. Evidence for Dark Matter. Gravitational lenses. What is Dark Matter? Hot vs. cold DM 			
Nov 15,17	[30.2] The origin of structure; WMAP measurements.	The growth of structure. Initial fluctuations. WMAP			
Nov 22	[26.1] Interaction of galaxies	Bottom-up structure			
Thu Nov 24	Thanksgiving Holiday	formation. (turkey break)			
Nov 29, Dec 1	[26.2] The formation of galaxies	The Quasar Era. Evolution to modern-			
Dec 6,8	Quasars & Active galactic Nuclei (AGN) [28.2] Unified model of AGN (<i>Skip</i> [28.1], [28.3]) [18.2] Accretion Disk pp. 661-666 [24.4] The Galactic Center	day galaxies. • Chemical enrichment revisited. • The first stars.			




Galaxy		Distance ³ (1000 LY)	Absolute Magnitude	Apparent Magnitude	Diameter. (1000 LY)
Milky Way Andromeda	S(B)bc	26	-20.6		130
(M31, NGC224)	Sb	2500	-21.2	3.4	200
M33 (NGC598)	Sc	2600	-18.9	5.1	45
Large Magellanic Cloud	Irr	160	-18.5	0.4	20
Small Magellanic Cloud	Irr	192	-17.1	2.0	15
C10	Irr	2700	-16.7	10.4	6
NGC205	ESpec	2500	-16.4	8.1	10
M32 (NGC221)	E2	2500	-16.5	8.1	5
NGC6822	Irr	1630	-16.0	8.5	8
WLM	Irr	3000	-14.4	10.4	7
NGC185	E3pec	2150	-15.6	9.1	6
IC1613	Irr	2360	-15.3	9.1	12
NGCI47	E5	2150	-15.1	9.5	10
Leo A	Irr	2250	-11.5	12.7	7
Pegasus	Irr	2500	-12.3	12.6	8
Fornax	E3	450	-13.1	7.3	3
DDO210	Irr	3350	-11.3	13.9	4
Sagittarius Dwarf ⁴	DwE	80	-13.8	?	25
Sagittarius	Irr	4250	-10.7	14.2	5
Sculptor	E3	285	-9.8	8.8	1
Andromeda I	E3	2650	-11.8	12.8	2
Andromeda III	E5	2500	-10.2	14.2	3
Andromeda II	E2	1900	-11.8	12.7	2.3
Pisces (LGS3)	Irr	2640	-10.4	14.3	0.5
.eo l	E3	800	-11.9	10.2	1
.eo II	EO	695	-10.1	11.6	0.5
Ursa Minor	E5	205	-8.5	10.6	· 1
Draco	E3	260	-8.6	11.0	0.5
Carina	E4	325	-9.4	10.6	0.5
AndromedaV	DwE	2640	-10.5	15.5	-
hoenix	Irr	1300	-9.8	_	-
extans	DwE	280	-9.5	10.3	-
ucana	DwE	2850	-9.6	15.2	-
Cassiopeia .	DwE	2525	-	15.2	
Andromeda VI	DwE	2300	-	13.9	-





The Evidence for Dar	k Matter							
Mass/Luminosity Ratio								
• Local stellar luminosity function:	M/L = 0.67							
• Our Galaxy, at larger scales:								
• Local motions \perp disk (Oort limit):	$M/L \sim 3-5$							
• Flat rotation curve	> 30							
• Escape speed	> 30							
• Pop II dynamics (glob. clusters, etc.)	~ 27							

