The Growth of Structure
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The Simplest Picture of Galaxy Formation and Why It Fails

(chapter title from Longair, “Galaxy Formation”)

Will a condensation collapse? Mass =M

. ) Temp=T
The Jeans criterion: Dengity =

(see [CO Sect. 12.2 and pg. 1250]
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How fast will it collapse?
In a static medium (e.g. star formation): Expanding U.

Perturbation analysis shows density = p

M < M,
Splp oc exp(-ir/1 - iat ) = Oscillations
M > M,

oplp oc exp(-ir/1 + Kt) = Exponential
growth

In an expanding medium (e.g. the universe):

Outside the perturbation

R .
(flat universe): HER® — }‘T(")R = () (Friedman Eqn)
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(closed mini-universe): AR 3'7("” R = —ke
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P p 8aGpR?
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Matter era: p=pRM
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See [CO pg. 1249]
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The Simplest Picture of Galaxy Formation and Why It Fails

e Cosmic Microwave Background is
smooth to a few parts in 10°

oplp ~ 104

» Yet high contrast structures (QSOs,
galaxies) by z ~ 6. SR

oplp >>1

e Adiabatic perturbations grow as
oplp <t 2Boc R(t) oc 1/(1+2)

e Expect only
(doJ _ A+2)cwe
P QSO

(5/’} _ 1100, 164 ~0.01
(1+ Z)QSO CMB

P

Blue = 0°K
Red =4°K

Blue = 2.724°K
Red =2.732°K
Dipole Anistropy
~ 1 part in 300

After removing
dipole

So where did galaxies and clusters
come from?

Red - blue = 0.0002°K
~ 1 part in 104




In an expanding universe, will a cloud collapse?

The Jeans criterion Version 2: 2K < -U
Pressure support < gravity
Collapseif 2K <-U
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Q.When do oscillations start?

2K < -U
When Pressure support < gravity

Particle horizon = 4y,
y

Radiation pressure

| Size scale for mass M .
has disappeared.

Clouds now
Radiation pressure collapse.
Before decoupling: keePflef';gji;'_"“ds Decoupling
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The Rest of
the Story:

At tyecouping this mass was ~ 106 Mg,
— M > 10 Mg =» continued growth

— M < 10' Mg = oscillations once mass
scale comes into particle horizon.

But Dark Matter not subject to all this.
— Does not feel radiation pressure.
— Just collapses away...

Baryons fall into Dark Matter potential
wells as soon as decoupling removes
photon pressure support.
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CMB Fluctuations = snapshot of
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Fourier analyze WMAP image:
Measures “Power” for each size scale 6.
= Power for each mass scale M.

What is
measured?
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Fourier analyze WMAP image:

Measures “Power” for each size scale 0.
= Power for each mass scale M.

The Fourier Transform
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Average (dplp)? :
of clouds  ;
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size scale 6

!
& 6(deg)
Fourier analyze WMAP image:
« Measures “Power” for each size scale 0.
« = Power for each mass scale M.

e But why more power for some mass scales
than others?
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Fourier analyze WMAP image:

* Measures “Power” for each size scale 6. .
* = Power for each mass scale M.
*  But why more power for some mass scales *

than others?

(5p/,0 )Dark Matter \/\/\

All blobs of same mass M oscillate
synchronously.

Peaks are for mass scales that are either
fully compressed or fully rarified.

(510/,0 )Baryons

Baryons: Shorter spatial wavelengths oscillate with higher time frequency
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First peak: Positive (K<0)
. N . . . Curvature
Size of “acoustic horizon

r=vs (tDecoupIing - tHorizon) =c/3t
= linear size of perturbation
0 =r/y(d)
x =sin(d), d, sinh(d)
lpeak = 220/Q, M2 (1= multipole )
Measured g, P QO = 1.02+.02

Boomerang balloon flight (1999)

Mapped Cosmic Background
Radiation with far higher angular
resolution than previously
available.

Launch near Mt. Erebus
in Antarctica

Boomerang




Position of 15t peak measures curvature

Angular scale in degrees
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The “Concordance” Cosmology (or ACDM)

e Type la Supernovae as “standard candles”
=>» accelerating expansion
2q,=Q,/2-Q,

* CMB anisotropy =2 Qi = Q, + Q4 Another independent measure:
+ Can solve for Q. , Q, Rate of galaxy cluster evolution
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Q,,, = matter density/critical density a, [CO 30.22]




