AST 308 Homework Set 5
 Due Tuesday Nov 1

Question 1. The R-W metric for the case $k>0$ actually describes the equivalent of a 3D "spherical" surface embedded in a 4D space. It is easy to show this if you know the little tricks to use. The following steps will guide you through the problem. Write your answers on a separate sheet of paper, showing each intermediate result.
In Cartesian coordinates, the equation of a 1D circular "surface" of radius \mathscr{R} embedded in a 2D space is: $x^{2}+y^{2}=\mathscr{R}^{2}$. The line element (or metric) in Cartesian coordinates in that 2D space is $d l^{2}=d x^{2}+d y^{2}$.
(a) Write down the equation of a 2D spherical surface of radius \mathscr{R} embedded in a 3D space (this is just what we usually think of as a sphere), and of the line element, both in Cartesian coordinates in that 3D space.
(b) Write down the equation of a 3D "spherical surface" of radius \mathscr{R} embedded in a 4D space, and of the line element, both in Cartesian coordinates in that 4D space. Call your dimensions x, y, z and w :
(c) In your equation for the 4 D sphere, make the replacement $r^{2}=x^{2}+y^{2}+z^{2}$. Now solve for w^{2} in terms of \mathscr{R}^{2} and r^{2}, and then for $d w=$ function ($\left.\boldsymbol{R}, r, d r\right)$.

(d) In your 4D line element from step (b), replace $d w$ with the results from step (c).
(e). Also replace the 3D part of the line element, $d x^{2}+d y^{2}+d z^{2}$ with its 3D equivalent in spherical coordinates r, θ, ϕ : Hint: if you don't know what these are, compare the first two equations on slide 7 of the Oct. 20 lecture notes (the slide titled "Some Metrics").
(f) Collect together the terms in $d r^{2}$ and use a little algebra. You should come up with a line element for which the coefficient of the $d r^{2}$ term is $1 /\left(1-r^{2} / \mathscr{R}^{2}\right)$.
(g) Finally, make the substitutions $k^{1 / 2} \sigma=r / \mathcal{R}, k^{1 / 2} d \varpi=d r / \mathscr{R}$, and $R(t)=k^{1 / 2} \mathscr{R}$. Here $R(t)$ is the scale factor and k is the constant in the RW metric as used by [CO]. Write down your final answer. How does it compare with the space-like part of the RW metric for $k=+1$?
(h) So what in the world just happened? Write down 1-sentence answers to the following:

- What does \mathscr{R} represent physically?
- What does r represent physically?
- What does k represent in terms of this geometry?
- What new constraint allowed you to eliminate $d w$ from the 4D line element (i.e from the 4D metric)? You replaced the w dimension with something, somehow, somewhere.
Question 2. Solve the Friedmann equation for the case in which the density terms $\rho_{\text {matter }}$ and $\rho_{\text {relativistic }}$ are negligible compared to the cosmological constant Λ, in a flat universe. Show your steps.

Question 3. Suppose that we were still back in the radiation-dominated universe (the "radiation era") and a photon was just arriving from the particle horizon at that time. Call the time t_{x}. Calculate the path that the photon would have taken to arrive at $\sigma=0$ at time $t=t_{x}$, in terms of the proper distance $d_{p}(t)$ as a function of time. What is its maximum proper distance? Show your work.

