AST 308
Homework Assignment 7
Due Tuesday Dec 6

This homework goes with the lecture material about Black Holes that I plan to present on Thursday Dec. 1.

The idea is for you to combine the equation for the conservation of energy in a Schwarzschild geometry with the
appropriate metric to derive a few equations of motion for objects moving in a gravitational field. In case you are
interested, the equation for conservation of energy is derived on the last page of this assignment. It is easier than it looks.

Questions 1 and 2. The astronaut starts out at rest at r = oo (i.e. he/she is just gradually pulled into the black hole

and accelerated by gravity; nobody is given a shove). The astronaut has no angular momentum, so falls straight into the
black hole.

Astronaut Falling into a Black Hole
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Hints for Question 1:
e What is the rest energy/per unit mass for an object outside of the gravitational field (i.e. at r = %0)?

e Since energy is conserved, what is E/m always equal to? T
BN 10 [P DO0U fr2eq pele ¢ = |°
W (J R w ps [cO] vorsmow’ | = wic_
E SW/q 3
AR 13 UA LV 20 16 pene

o What is the value of d¢ in this problem?
e The restis algebra.
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Question 3:
Given the Schwarzschild metric, energy and angular momentum definitions shown at the top of the slide, show that the
equation for the effective potential in the Schwarzschild geometry is correct:
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Appendix:

Deriving the Energy per Unit Mass for the Schwarzschild Geometry:

Use the idea that objects follow geodesics = paths through space-time over which [ ds is an extremum.

Suppose that an object with no angular momentum (so that d¢ = 0) is falling in a gravitational field. Points ry, r, and r all
lie along its path, but to know the object’s motion through space-time we need to work out the times at which it will pass

through those points.

Schwazschild metric: d.vz

Rewrite as:
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Break 5 into two smaller intervals $4 and $g. Require the falling object to pass through point ¥ = ¥; at time 0 and
through ¥ = r; attime T At what intermediate time f will it pass through the fixed point #;? G R. says that object
will follow a geodesic, sothat f automatically adusts itself so that § is an extremum. i.e_ds/df = 0.

The clever trick: Find ds/df separately for each of the two segments 5,4 and 5z
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Let’s arbitrarily call it

“Energy per unit mass”

field. Highly recommended

The above derivation is from Taylor & Wheeler, “Exploring Black Holes, Introduction to General Relativity”
(TW?2). They show a similar derivation of the energy equation for special relativity, and also many very well-
explained examples of using the Schwarzschild metric to determine how things move through a gravitational




