1 calorie = 4.186 J**Useful Constants:** Latent heat of vaporization of water = 539 cal/g = 2256 kJ/kgLatent heat of fusion of water = 79.5 cal/g = 333 kJ/kgSpecific heat of water = 1 cal/g = 4.19 kJ/kg1 atmosphere = 1.01E5 Pa Universal Gas Constant, R = 8.31 J/mol.KBoltzmann's constant, k = 1.38E-23 J/KStefan-Boltzmann constant, $\sigma = 5.67\text{E-8 W/m}^2\text{K}^4$ Avogadro's number, $N_A = 6.02E23 \text{ mol}^{-1}$ Coulomb's constant, $(1/4\pi\epsilon_0) = 8.99\text{E9 N}.\text{m}^2/\text{C}^2$ Speed of light, c = 3.00E8 m/sCharge of an electron, -e = -1.6E-19 C Mass of the electron, $m_e = 9.1E-31 \text{ kg} = 511 \text{ keV/c}^2 = 5.49E-4 \text{ u}$ Mass of the proton, $m_p = 1.67E-27 \text{ kg} = 938.3 \text{ MeV/c}^2 = 1.00728 \text{ u}$ Mass of the neutron, $m_n = 1.675E-27$ kg = 939.6 MeV/c² = 1.00866 u Mass of the α particle, $m_{\alpha} = 3727.4 \text{ MeV/c}^2 = 4.00151 \text{ u}$ Planck's constant, h = 6.63E-34 J.s = 4.14E-15 eV.sPlanck's reduced constant, $\hbar = h/2\pi = 1.05E-34$ J.s = 6.58E-16 eV.s Compton Wavelength of the electron, $\lambda_c = h/m_ec = 2.4263E-12$ m The Bohr Magneton, $\mu_B = 5.79E-5 \text{ eV/T}$ Atomic mass unit, $u = 1.66E-27 \text{ kg} = 931.5 \text{ MeV/c}^2$ 1 Curie = 3.7E10 Bq

<u>Useful Formulae</u>

 $\Delta Q = mc\Delta T$ where m = mass, c = specific heat.

Heat conduction, $I = \Delta T/R$ in Watts where R = thermal resistance = $\Delta x/kA$ and

 Δx = thickness, A = area and k = thermal conductivity of the material.

 $P_{RAD} = \sigma \epsilon A T^4$ where ϵ = emissivity and A = area.

1st Law of Thermodynamics: $\Delta Q = \Delta W + \Delta U$

Ideal gas law: PV = nRT Work done, $\Delta W = \int PdV$ $v_{rms} = \sqrt{(3RT/M)}$ Molar specific heats: $C_V = \Delta U/n\Delta T$ $C_P = \Delta Q/n\Delta T$ $C_P = C_V + R$ $\gamma = C_P/C_V$ $\Delta Q = nC\Delta T$ Adiabatic ==> $\Delta Q = 0$, and PV^{γ} = constant. Entropy change: $\Delta S = \int dQ/T$ Carnot engine efficiency, $\varepsilon_C = 1 - Q_C/Q_H = 1 - T_C/T_H$ Potential energy lost by a charge q in traversing a potential difference of V is U = qV Wave relation: $v = v\lambda$ where v = velocity, v = frequency, $\lambda =$ wavelength. $\beta = v/c$ $\gamma = 1/\sqrt{(1 - \beta^2)}$ Length Contraction: $L' = L/\gamma$ Time Dilation, $T' = \gamma T$ Addition of Velocities: $v' = (v + u)/(1 + vu/c^2)$ Relativistic Doppler Effect: $v' = \frac{\sqrt{(1 - \beta)}v}{\sqrt{(1 + \beta)}}$ Momentum – Energy relations: $E^2 = p^2c^2 + m^2c^4$ $E = \gamma mc^2$ $p = \gamma mv$ $K = E - mc^2$

Planck's Relation: E = hv Einstein's Photoelectric Law: $hv = K + \phi$

Compton Effect: $\Delta \lambda = \lambda' - \lambda = (1 - \cos \theta)h/m_ec$

Electrostatic potential at a distance R from a charge Q: $V = (1/4\pi\epsilon_0)Q/R$

Bohr Quantization Relation: $L = mvr = n\hbar$

Atomic Radii: $r_n = n^2 a_0/Z$ Atomic Energies: $E_n = -Z^2 E_0/n^2$ where $a_0 = 5.29$ E-11 mwhere $E_0 = 13.6$ eV

Impact parameter:
$$b = \underline{Z_1 \ Z_2 \ e^2} \cot(\theta/2)$$
 $n = \rho N_A/A$
 $8\pi\epsilon_0 K$

Fraction of α 's scattered through θ or greater: $f = \pi b^2 nt$

Rutherford Scattering: $N(\theta) = \frac{N_i n t e^4 Z_1^2 Z_2^2}{16 (4\pi\epsilon_0)^2 r^2 K^2 \sin^4(\theta/2)}$

de Broglie wavelength: $\lambda = h/p$ Bragg's Law: $n\lambda = 2dsin\theta$

Heisenberg Uncertainty Principle: $\Delta p_x \Delta x \ge \hbar/2$ $\Delta E \Delta t \ge \hbar/2$

Probability = ψ^2 Normalization condition: $\int \psi^2 dx = 1$

Infinite Square Well Potential in 1-dim: $\psi = \sqrt{2}/L \sin(n\pi x/L) \qquad E_n = n^2 \pi^2 \hbar^2 / 2mL^2$ Infinite Square Well Potential in 3-dims: Simple Harmonic Oscillator: $V = \frac{1}{2}kx^2$ Quantum number relations: n > 0 l < n $L = \sqrt{l(l+1)} \hbar$ $|m_l| \le l$ $E_n = n^2 \pi^2 \hbar^2 / 2mL^2$ $E_n = n^2 \pi^2 \hbar^2 / 2mL^2$ $E_n = n^2 \pi^2 \hbar^2 / 2mL^2$

 $s = \pm \frac{l}{2}$ $S = \sqrt{s(s+1)}$ ħ J = L + S $j = l \pm s$

Zeeman Effect: $V_B = -\mu \cdot B = \mu_B Bm_l \text{ or } 2\mu_B Bm_s$

Anomalous Zeeman Effect: $V_B = \mu_B Bgm_j$ where g = Landé g-factor = 1 + J(J+1)+S(S+1)-L(L+1)2J(J+1)

Radioactive decay law: $N = N_0 e^{-\lambda t}$ with $t_{1/2} = 0.693/\lambda$

Activity: $R = \lambda N$ 1 Becquerel (Bq) = 1 decay/s

Q-value: $Q = (M_x + M_X - M_y - M_Y)c^2$