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THE OPTICAL
ENGINEERING PROCESS

Determine basic system
parameters, such as
magnification and 

object/image distances

Using paraxial formulas 
and known parameters, 

solve for remaining values

Pick lens components 
based on paraxially 

derived values

Estimate performance 
characteristics of system

Determine if chosen 
component values conflict

with any basic 
system constraints

Determine if performance
characteristics meet 
original design goals

ENGINEERING SUPPORT

Melles Griot maintains a staff of knowledgeable,
experienced applications engineers at each of our
facilities worldwide. The information given in this
chapter is sufficient to enable the user to select the
most appropriate catalog lenses for the most
commonly encountered applications. However, when
additional optical engineering support is required,
our applications engineers are available to provide
assistance. Do not hesitate to contact us for help in
product selection or to obtain more detailed
specifications on Melles Griot products.

Even though several thousand different optical components
are listed in this catalog, performing a few simple calculations will
usually determine the appropriate optics for an application or, at
the very least, narrow the list of choices.

The process of solving virtually any optical engineering problem
can be broken down into two main steps. First, paraxial calcula-
tions (first order) are made to determine critical parameters such
as magnification, focal length(s), clear aperture (diameter), and
object and image position. These paraxial calculations are covered
in the next section of this chapter.

Second, actual components are chosen based on these paraxial
values, and their actual performance is evaluated with special
attention paid to the effects of aberrations. A truly rigorous
performance analysis for all but the simplest optical systems
generally requires computer ray tracing, but simple generaliza-
tions can be used, especially when the lens selection process is
confined to a limited range of component shapes.

In practice, the second step may reveal conflicts with design
constraints, such as component size, cost, or product availability.
System parameters may therefore require modification.

Because some of the terms used in this chapter may not be
familiar to all readers, a glossary of terms is provided beginning
on page 1.29.

Finally, it should be noted that the discussion in this chapter
relates only to systems with uniform illumination; optical systems
for Gaussian beams are covered in Chapter 2, Gaussian Beam
Optics.

Introduction
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Paraxial Formulas

SIGN CONVENTIONS

The validity of the paraxial lens formulas is dependent on adherence to the following sign conventions: 

For lenses: (refer to figure 1.1)

s is 1 for object to left of H
(the first principal point)

s is 5 for object to right of H

s″ is 1 for image to right of H″
(the second principal point)

s″ is 5 for image to left of H″

m is 1 for an inverted image

m is 5 for an upright image 

For mirrors: 

f is 1 for convex (diverging) mirrors

f is 5 for concave (converging) mirrors

s is 1 for object to left of H

s is 5 for object to right of H

s″ is 5 for image to right of H″

s″ is 1 for image to left of H″

m is 1 for an inverted image

m is 5 for an upright image 

When using the thin-lens approximation, simply refer to the left and right of the lens.

s

f

F

f

front focal point rear focal point

principal points

f
object Hv

image

H″
F″

s″

h

h″

f = lens diameter

m = s″/s = h″/h = magnification or
conjugate ratio, said to be infinite if
either s″ or s is infinite

v = arcsin (f/2s)

h = object height

h″ = image height

s = object distance, positive for object (whether real 
or virtual) to the left of principal point H

s″ = image distance (s and s″ are collectively called
conjugate distances, with object and image in
conjugate planes), positive for image (whether real
or virtual) to the right of the principal point H″

f = effective focal length (EFL) which may be positive 
(as shown) or negative. f represents both FH and
H″F″, assuming lens to be surrounded by medium 
of index 1.0

Note location of object and image relative to front and rear focal points.

Figure 1.1 Sign conventions
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object

F1

F2
image

200 66.7

Figure 1.2 Example 1 (f = 50 mm, s = 200 mm, s″ = 66.7 mm)

object
F1 F2

image

Figure 1.3 Example 2 (f = 50 mm, s = 30 mm, s″ = 475 mm)

1
f
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1
s

  
1
s

 .+
′′
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s
s

 =  
h
h

′′ ′′
.

f =  m
(s +  s )

(m +  1)

f =  
sm
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m
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1
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 =  

1

50
  

1

200
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m  =  
s

s
 =  

66.7

200
 =  0.33

(or real image is 0.33 mm high and inverted).

′′

′′

′′

′′

4

4

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

Typically, the first step in optical problem solving is to select a
system focal length based on constraints such as magnification or
conjugate distances (object and image distance). The relation-
ship among focal length, object position, and image position is 
given by

This formula is referenced to figure 1.1 and the sign conven-
tions given on page 1.3.

By definition, magnification is the ratio of image size to object
size or 

This relationship can be used to recast the first formula into the
following forms:

where (s + s″) is the approximate object-to-image distance.

With a real lens of finite thickness, the image distance, object
distance, and focal length are all referenced to the principal points,
not to the physical center of the lens. By neglecting the distance
between the lens’ principal points, known as the hiatus, s + s″
becomes the object-to-image distance. This simplification, called the
thin-lens approximation, can speed up calculation when dealing
with simple optical systems.

Example 1: Object outside Focal Point 

A 1-mm-high object is placed on the optical axis, 200 mm left of the
left principal point of a 01 LDX 103 (f = 50 mm). Where is the
image formed, and what is the magnification? (See figure 1.2.)

Example 2: Object inside Focal Point 

The same object is placed 30 mm left of the left principal point of
the same lens. Where is the image formed, and what is the magni-
fication? (See figure 1.3.)

1
s

 =  
1
50

  
1
30

s  =  75 mm

m =  
s
s

 =  
75

30
 =  2.5

(or virtual image is 2.5 mm high and upright).

′′

′′

′′

4

4

4
4

1
s

 =  
1
50

  
1
50

s  =  25 mm

m =  
s
s

 =  
25

50
 =  0.5

(or virtual image is 0.5 mm high and upright).

′′
′′

′′

4
4

4

4
4

In this case, the lens is being used as a magnifier, and the image can
be viewed only back through the lens.

Example 3: Object at Focal Point

A 1-mm-high object is placed on the optical axis, 50 mm left of the
first principal point of an 01 LDK 019 (f = 50 mm). Where is the
image formed, and what is the magnification? (See figure 1.4.)
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object

F1F2 image

Figure 1.4 Example 3 (f = 450 mm, s = 50 mm, s″ = 425 mm)

v

f

2

principal surface

f

Figure 1.5 F-number and numerical aperture
A simple graphical method can also be used to determine paraxial

image location and magnification. This graphical approach relies on
two simple properties of an optical system. First, a ray that enters
the system parallel to the optical axis crosses the optical axis at the
focal point. Second, a ray that enters the first principal point of the
system exits the system from the second principal point parallel to
its original direction (i.e., its exit angle with the optical axis is the same
as its entrance angle). This method has been applied to the three
previous examples illustrated in figures 1.2 through 1.4. Note that by
using the thin-lens approximation, this second property reduces to the
statement that a ray passing through the center of the lens is undeviated.

F-NUMBER AND NUMERICAL APERTURE

The paraxial calculations used to determine necessary element
diameter are based on the concepts of focal ratio (f-number or f/#)
and numerical aperture (NA). The f-number is the ratio of the focal
length of the lens to its clear aperture (effective diameter).

f-number  =  
f
f

.

NA =  sin =  
2f

v 
f

or

NA =  
1

2(f-number)
.

(1.7)

(1.9)

(1.8)

To visualize the f-number, consider a lens with a positive focal
length illuminated uniformly with collimated light. The f-number
defines the angle of the cone of light leaving the lens which ultimately
forms the image. This is an important concept when the throughput
or light-gathering power of an optical system is critical, such as
when focusing light into a monochromator or projecting a high-
power image.

The other term used commonly in defining this cone angle is
numerical aperture. Numerical aperture is the sine of the angle made
by the marginal ray with the optical axis. By referring to 
figure 1.5 and using simple trigonometry, it can be seen that 

Ray f-numbers can also be defined for any arbitrary ray if its
conjugate distance and the diameter at which it intersects the
principal surface of the optical system are known.

NOTE

Because the sign convention given previously is not
used universally in all optics texts, the reader may
notice differences in the paraxial formulas. However,
results will be correct as long as a consistent set of
formulas and sign conventions is used.
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Imaging Properties of Lens Systems

THE OPTICAL INVARIANT 

To understand the importance of the numerical aperture, consider
its relation to magnification. Referring to figure 1.6,

NA (object side) =  sin =  
2s

NA  (image side) =  sin =  
2s

which can be rearranged to show

=  2s sin

and

=  2s  sin

leading to

s

s
 =  

sin

sin
 =  

NA

NA

Since 
s

s
 is simply the magnification of the system, 

we arrive at

m =  
NA

NA"

v 
f

v  
f

f v

f v

v

v

"

.

.

′′
′′

′′ ′′

′′
′′

′′
"

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

The magnification of the system is therefore equal to the ratio
of the numerical apertures on the object and image sides of the
system. This powerful and useful result is completely independent
of the specifics of the optical system, and it can often be used to deter-
mine the optimum lens diameter in situations involving aperture
constraints.

When a lens or optical system is used to create an image of a
source, it is natural to assume that, by increasing the diameter (f)
of the lens, we will be able to collect more light and thereby produce
a brighter image. However, because of the relationship between
magnification and numerical aperture, there can be a theoretical limit
beyond which increasing the diameter has no effect on light-
collection efficiency or image brightness.

Since the numerical aperture of a ray is given by f/2s, once a
focal length and magnification have been selected, the value of NA
sets the value of f. Thus, if one is dealing with a system in which the
numerical aperture is constrained on either the object or image
side, increasing the lens diameter beyond this value will increase
system size and cost but will not improve performance (i.e., through-
put or image brightness). This concept is sometimes referred to as
the optical invariant.

SAMPLE CALCULATION

To understand how to use this relationship between magnifi-
cation and numerical aperture, consider the following example.

Example: System with Fixed Input NA 

Two very common applications of simple optics involve coupling
light into an optical fiber or into the entrance slit of a monochro-
mator. Although these problems appear to be quite different, they
both have the same limitation — they have a fixed numerical
aperture. For monochromators, this limit is usually expressed in
terms of the f-number. In addition to the fixed numerical aperture,
they both have a fixed entrance pupil (image) size.

Suppose it is necessary, using a singlet lens from this catalog, to
couple the output of an incandescent bulb with a filament 1 mm in
diameter into an optical fiber as shown in figure 1.7. Assume that the
fiber has a core diameter of 100 mm and a numerical aperture of 0.25,
and that the design requires that the total distance from the source
to the fiber be 110 mm. Which lenses are appropriate?

By definition, the magnification must be 0.1. Letting s + s″ total
110 mm (using the thin-lens approximation), we can use equation
1.3,

f =  m
(s +  s )

(m +  1)2

′′

s (m + 1) =  s + s ,′′

0.25 =  
20

=  5 mm.

f

f 

to determine that the focal length is 9.1 mm. To determine the
conjugate distances, s and s″, we utilize equation 1.6,

and find that s = 100 mm and s″ = 10 mm.

We can now use the relationship NA = Ω/2s or NA″ = Ω/2s″ to
derive Ω, the optimum clear aperture (effective diameter) of the lens.

With an image numerical aperture of 0.25 and an image distance
(s″) of 10 mm, 

Accomplishing this imaging task with a single lens therefore
requires an optic with a 9.1-mm focal length and a 5-mm diameter.
Using a larger diameter lens will not result in any greater system
throughput because of the limited input numerical aperture of the
optical fiber. The singlet lenses in this catalog that meet these criteria
are 01 LPX 003, which is plano-convex, and 01 LDX 003 and
01 LDX 005, which are biconvex.

Making some simple calculations has reduced our choice of
lenses to just three. Chapter 2, Gaussian Beam Optics, discusses
how to make a final choice of lenses based on various performance
criteria.
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magnification = =  = 0.1Xh"
h

0.1
1.0

filament
h = 1 mm

s + s" = 110 mm

s = 100 mm s" = 10 mm

fiber core
h" = 0.1 mm

optical system
f = 9.1 mm

NA = = 0.025f

2s

f = 5 mm

NA" = = 0.25f

2s"

Figure 1.7 Optical system geometry for focusing the output of an incandescent bulb into an optical fiber

v″

f
2

s″

f

s

v

object side

image side

Figure 1.6 Numerical aperture and magnification
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Lens Combination Formulas

SYMBOLS

f = combination focal length (EFL), positive if
combination final focal point falls to right of
combination secondary principal point,
negative otherwise.

f1 = focal length (EFL) of first element.

f2 = focal length (EFL) of second element.

d = distance from secondary principal point of
first element to primary principal point of
second element (positive if primary principal
point is to right of the secondary principal
point, negative otherwise).

s2″ = distance from secondary principal point of
second element to final combination focal
point (location of final image for object at
infinity to left), positive if the focal point is 
to right of second element secondary principal
point.

z = distance to combination secondary principal
point measured from secondary principal
point of second element, positive if
combination secondary principal point is to
right of secondary principal point of second
element.

Note: These paraxial formulas apply to coaxial
combinations of both thick and thin lenses immersed
in any fluid with refractive index independent of
position. They assume that light propagates from left
to right through an optical system.

COMBINATION EXAMPLES

It is possible for a lens combination or system to exhibit principal
planes that are far removed from the system. When such systems
are themselves combined, negative values of d may occur. Proba-
bly the simplest example of a negative d-value situation is shown in
figure 1.9. Meniscus lenses with steep surfaces have external prin-
cipal planes. When two of these lenses are brought into contact, a
negative value of d can occur. Other combined-lens examples are
shown in figures 1.10 through 1.13.

f =  
f f

f  +  f d
1 2

1 2  4 
.

1
f

 =  
1
f

 +  
1
f

d
f f1 2 1 2

 4 .

′′s  =  
f  (f d)

f  +  f d2
2 1

1 2

 4  

 4  
.

z =  s  f .2′′ 4  

(1.16)

(1.17)

(1.18)

(1.19)

PARAXIAL LENS COMBINATION FORMULAS 

Many optical tasks require several lenses in order to achieve an
acceptable level of performance. One possible approach to lens
combinations is to consider each image formed by each lens as the
object for the next lens and so on. This is a valid approach, but it is
time consuming and unnecessary.

It is much simpler to calculate the effective (combined) focal
length and principal-point locations and then use these results in
any subsequent paraxial calculations (see figure 1.8). They can even
be used in the optical invariant calculations described in the
preceding section.

EFFECTIVE FOCAL LENGTH

The following formulas show how to calculate the effective focal
length and principal-point locations for a combination of any two
arbitrary components. The approach for more than two lenses is very
simple: calculate the values for the first two elements, then perform
the same calculation for this combination with the next lens. This is
continued until all lenses in the system are accounted for.

The expression for the combination focal length is the same
whether lens separation distances are large or small and whether f1
and f2 are positive or negative:

This may be more familiar in the form 

Notice that the formula is symmetric with respect to interchange
of the lenses (end-for-end rotation of the combination) at constant
d. The next two formulas are not.

COMBINATION FOCAL-POINT LOCATION 

For all cases, 

COMBINATION SECONDARY 
PRINCIPAL-POINT LOCATION 

Because the thin-lens approximation is obviously highly invalid
for most combinations, the ability to determine the location of the
secondary principal point is vital for accurate determination of d when
another element is added. The simplest formula for this calculates
how far the secondary principal point of the final (second) element
is moved by being part of the combination:
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lens combinations or systems may exhibit “crossed” principal planes; single lenses cannot

INDIVIDUAL ELEMENT

1st element 2nd element

d
z, from formula

combination secondary principal plane 
(to find combination primary principal plane, 
apply procedure to reversed combination 
resulting from end-to-end rotation)2 elements

COMBINATION

3rd element
d

subsystem secondary principal plane

SUBSYSTEM

n-1 elements nth element to be added to complete the system
d

system secondary 
principal plane

z, from formula

COMPLETE SYSTEM
principal planes

not “crossed”
system primary principal plane (secondary principal 
plane located by z formula for reversed system)

subsystem secondary principal plane

nth element to be added to complete the system

subsystem primary principal plane
d

n-1 elements

SUBSYSTEM
principal planes internal but “crossed”

Figure 1.8 Generalization from combinations to systems

1 2 3 4

d>0 d<0

3 4 1 2

Figure 1.9 “Extreme” meniscus-form lenses with external principal planes (drawing not to scale)
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Figure 1.11 Achromatic combinations: Air-spaced lens
combinations can be made nearly achromatic, even though
both elements are made of the same material. Achieving
achromatism requires that, in the thin-lens approximation,

d =  
( f + f )

2
 .1 2

This is the basis for Huygens and Ramsden eyepieces.

This approximation is adequate for most thick-lens situations.
The signs of f1, f2, and d are unrestricted, but d must have a
value that guarantees the existence of an air space. Element
shapes are unrestricted and can be chosen to compensate for
other aberrations.

H1″

f1

H2 H2″

d f2

combination
secondary

principal plane

focal plane

z
d

f<0f1 f2

s2″

Figure 1.10 Positive lenses separated by distance greater
than f1 + f2: f is negative, while both s2″ and z are positive.
Lens symmetry is not required.

combination
focus

combination
secondary
principal plane

f
z<0

d s2″

Figure 1.12 Telephoto combination: The most important
characteristic of the telephoto is that the EFL, and hence the
image size, can be made much larger than the distance from the
first lens surface to the image would suggest by using a positive
lens followed by a negative lens (but not necessarily the lens
shapes shown in the figure). For example, f1 is positive and 
f2 = 4f1/2. Then f is negative for d less than f1/2, infinite for 
d = f1/2 (Galilean telescope or beam expander), and positive for
d larger than f1/2. To make the example even more specific,
catalog lenses 01 LDX 189 and 01 LDK 021, with d = 78.2 mm,
will yield s2″= 2.0 m, f = 5.2 m, and z = 43.2 m.

H

tc

n
tc

n

s s″

H″

Figure 1.13 Condenser configuration: A pair of identical
plano-convex lenses have their convex vertices in contact. 
(The lenses could also be plano aspheres.) Because d = 0, 
f = f1/2 = f2/2, f1/2 = s2″, and z = 0. The secondary principal
point of the second element and the secondary principal point
of the combination coincide at H″, at depth tc/n beneath the
vertex of the plano surface of the second element, where tc is
the element center thickness and n is the refractive index of the
element. By symmetry, the primary principal point of the combi-
nation is similarly located in the first element. Combination
conjugate distances must be measured from these points.
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Technical Assistance
Detailed performance analysis of an optical system 
is accomplished using computerized ray-tracing
software. Melles Griot applications engineers have
the capability to provide a ray-tracing analysis of
simple catalog components systems. If you need
assistance in determining the performance of your
optical system, or in selecting optimum components
for your particular application, please contact your
nearest Melles Griot office. 

Alternately, a database containing prescription
information for most of the components listed in this
catalog is available on the catalog CD-ROM. If you
would like to obtain a copy of this database, please
contact your Melles Griot representative.

For analysis of more complex optical systems, 
or the design of totally custom lenses, Melles Griot
Optical Systems, located in Rochester, New York, can
supply the necessary support. This group specializes
in the design and fabrication of high-precision, 
multielement lens systems. For more information
about their capabilities, please call your Melles Griot
representative.

material 1
index n1

material 2
index n2

wavelength l
d

v1

v2

Figure 1.14 Refraction of light at a dielectric boundary

APPLICATION NOTE

Performance Factors

After paraxial formulas have been used to select values for com-
ponent focal length(s) and diameter(s), the final step is to select
actual lenses. As in any engineering problem, this selection process
involves a number of tradeoffs, including performance, cost, weight,
and environmental factors. 

The performance of real optical systems is limited by several
factors, including lens aberrations and light diffraction. The magni-
tude of these effects can be calculated with relative ease.

Numerous other factors, such as lens manufacturing tolerances
and component alignment, impact the performance of an optical
system. Although these are not considered explicitly in the following
discussion, it should be kept in mind that if calculations indicate that
a lens system only just meets the desired performance criteria, in
practice it may fall short of this performance as a result of other
factors. In critical applications, it is generally better to select a lens
whose calculated performance is significantly better than needed.

DIFFRACTION 

Diffraction, a natural property of light arising from its wave
nature, poses a fundamental limitation on any optical system. Dif-
fraction is always present, although its effects may be masked if
the system has significant aberrations. When an optical system is
essentially free from aberrations, its performance is limited  solely
by diffraction, and it is referred to as diffraction limited.

In calculating diffraction, we simply need to know the focal
length(s) and aperture diameter(s); we do not consider other lens-
related factors such as shape or index of refraction. 

Since diffraction increases with increasing f-number, and aberra-
tions decrease with increasing f-number, determining optimum
system performance often involves finding a point where the combi-
nation of these factors has a minimum effect.

ABERRATIONS 

To determine the precise performance of a lens system, we can
trace the path of light rays through it, using Snell’s law at each
optical interface to determine the subsequent ray direction. This
process, called ray tracing, is usually accomplished on a computer.
When this process is completed, it is typically found that not all
the rays pass through the points or positions predicted by parax-
ial theory. These deviations from ideal imaging are called lens
aberrations. 

The direction of a light ray after refraction at the interface between
two homogeneous, isotropic media of differing index of refraction is
given by Snell’s law: 

n1sinß1 = n2sinß2 

where ß1 is the angle of incidence, ß2 is the angle of refraction, and
both angles are measured from the surface normal as shown in figure
1.14.

( 1.20)
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TSA

longitudinal spherical aberration

transverse spherical aberration

paraxial focal plane

F″

F″

u″

LSA

aberration-free lens

Figure 1.15 Spherical aberration of a plano-convex lens

Even though tools for precise analysis of an optical system are
becoming easier to use and are readily available, it is still quite useful
to have a method for quickly estimating lens performance. This
not only saves time in the initial stages of system specification, but
can also help achieve a better starting point for any further
computer optimization.

The first step in developing these rough guidelines is to realize
that the sine functions in Snell’s law can be expanded in an infinite
Taylor series: 

sin  =  /3!  +  /5! /7!  +  /9!  . . .1 1 1
3

1
5

1
7

1
9

v v v v v v 4 4 4

The first approximation we can make is to replace all sine func-
tions with their arguments (i.e., replace sin ß1 with ß1 itself and so
on). This is called first-order or paraxial theory because only the first
terms of the sine expansions are used. Design of any optical system
generally starts with this approximation using the paraxial formulas.

The assumption that sinß = ß is reasonably valid for ß close to zero
(i.e., high f-number lenses). With more highly curved surfaces (and
particularly marginal rays), paraxial theory yields increasingly large
deviations from real performance because sinß ≠ ß. These deviations
are known as aberrations. Because a perfect optical system (one
without any aberrations) would form its image at the point and to
the size indicated by paraxial theory, aberrations are really a measure
of how the image differs from the paraxial prediction.

As already stated, exact ray tracing is the only rigorous way to
analyze real lens surfaces. Before the advent of computers, this was
excessively tedious and time consuming. Seidel addressed this issue
by developing a method of calculating aberrations resulting from
the ß1

3/3! term. The resultant third-order lens aberrations are there-
fore called Seidel aberrations.

To simplify these calculations, Seidel put the aberrations of an
optical system into several different classifications. In mono-
chromatic light they are spherical aberration, astigmatism, field
curvature, coma, and distortion. In polychromatic light there are
also chromatic aberration and lateral color. Seidel developed
methods to approximate each of these aberrations without actually
tracing large numbers of rays using all the terms in the sine
expansions.

In actual practice, aberrations occur in combinations rather
than alone. This system of classifying them, which makes analysis
much simpler, gives a good description of optical system image
quality. In fact, even in the era of powerful ray-tracing software,
Seidel’s formula for spherical aberration is still widely used.

SPHERICAL ABERRATION

Figure 1.15 illustrates how an aberration-free lens focuses
incoming collimated light. All rays pass through the focal point F ″.
The lower figure shows the situation more typically encountered in
single lenses. The farther from the optical axis the ray enters the
lens, the nearer to the lens it focuses (crosses the optical axis). The
distance along the optical axis between the intercept of the rays
that are nearly on the optical axis (paraxial rays) and the rays that
go through the edge of the lens (marginal rays) is called longitudi-
nal spherical aberration (LSA). The height at which these rays
intercept the paraxial focal plane is called transverse spherical
aberration (TSA). These quantities are related by 

TSA = LSA ! tan u″.

Spherical aberration is dependent on lens shape, orientation, and
conjugate ratio, as well as on the index of refraction of the materials
present. Parameters for choosing the best lens shape and orientation
for a given task are presented later in this chapter. However, the

(1.21)
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Figure 1.16 Astigmatism represented by sectional views

third-order, monochromatic, spherical aberration of a plano-convex
lens used at infinite conjugate ratio can be estimated by 

spot size due to spherical aberration =  
0.067 f

f/#3
. (1.22)

Theoretically, the simplest way to eliminate or reduce spherical
aberration is to make the lens surface(s) with a varying radius of cur-
vature (i.e., an aspheric surface) designed to exactly compensate for
the fact that sin v≠ vat larger angles. In practice, however, most lenses
with high surface quality are manufactured by grinding and polishing
techniques that naturally produce spherical or cylindrical surfaces.
The manufacture of aspheric surfaces is more complex, and it is
difficult to produce a lens of sufficient surface accuracy to elimi-
nate spherical aberration completely. Fortunately, these aberrations
can be virtually eliminated, for a chosen set of conditions, by combin-
ing the effects of two or more spherical (or cylindrical) surfaces.

In general, simple positive lenses have undercorrected spherical
aberration, and negative lenses usually have overcorrected spherical
aberration. By combining a positive lens made from low-index glass
with a negative lens made from high-index glass, it is possible to pro-
duce a combination in which the spherical aberrations cancel but
the focusing powers do not. The simplest examples of this are
cemented doublets, such as the 01 LAO series which produce
minimal spherical aberration when properly used.

ASTIGMATISM 

When an off-axis object is focused by a spherical lens, the natural
asymmetry leads to astigmatism. The system appears to have two
different focal lengths. 

As shown in figure 1.16, the plane containing both optical axis
and object point is called the tangential plane. Rays that lie in this
plane are called tangential rays. Rays not in this plane are referred
to as skew rays. The chief, or principal, ray goes from the object
point through the center of the aperture of the lens system. The
plane perpendicular to the tangential plane that contains the prin-
cipal ray is called the sagittal or radial plane.

The figure illustrates that tangential rays from the object come
to a focus closer to the lens than do rays in the sagittal plane. When
the image is evaluated at the tangential conjugate, we see a line in
the sagittal direction. A line in the tangential direction is formed at
the sagittal conjugate. Between these conjugates, the image is either
an elliptical or a circular blur. Astigmatism is defined as the
separation of these conjugates.

The amount of astigmatism in a lens depends on lens shape only
when there is an aperture in the system that is not in contact with the
lens itself. (In all optical systems there is an aperture or stop, although
in many cases it is simply the clear aperture of the lens element itself.)
Astigmatism strongly depends on the conjugate ratio. 
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positive transverse coma

focal plane

Figure 1.18 Positive transverse coma

spherical focal surface

Figure 1.19 Field curvature
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Figure 1.17 Imaging an off-axis point source by a lens with positive transverse coma

COMA

In spherical lenses, different parts of the lens surface exhibit dif-
ferent degrees of magnification. This gives rise to an aberration
known as coma. As shown in figure 1.17, each concentric zone of
a lens forms a ring-shaped image called a comatic circle. This causes
blurring in the image plane (surface) of off-axis object points. An
off-axis object point is not a sharp image point, but it appears as a
characteristic comet-like flare. Even if spherical aberration is
corrected and the lens brings all rays to a sharp focus on axis, a
lens may still exhibit coma off axis. See figure 1.18.

As with spherical aberration, correction can be achieved by
using multiple surfaces. Alternatively, a sharper image may be
produced by judiciously placing an aperture, or stop, in an optical
system to eliminate the more marginal rays.

FIELD CURVATURE

Even in the absence of astigmatism, there is a tendency of optical
systems to image better on curved surfaces than on flat planes. This
effect is called field curvature (see figure 1.19). In the presence of astig-
matism, this problem is compounded because there are two separate
astigmatic focal surfaces that correspond to the tangential and
sagittal conjugates.

Field curvature varies with the square of field angle or the square
of image height. Therefore, by reducing the field angle by one-half,
it is possible to reduce the blur from field curvature to a value of 0.25
of its original size.
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Figure 1.20 Pincushion and barrel distortion Figure 1.21 Longitudinal chromatic aberration
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Variations of Aberrations with Aperture,
Field Angle, and Image Height

Positive lens elements usually have inward curving fields, and neg-
ative lenses have outward curving fields. Field curvature can thus
be corrected to some extent by combining positive and negative
lens elements.

DISTORTION

The image field not only may have curvature but may also be
distorted. The image of an off-axis point may be formed at a
location on this surface other than that predicted by the simple
paraxial equations. This distortion is different from coma (where
rays from an off-axis point fail to meet perfectly in the image
plane). Distortion means that even if a perfect off-axis point image
is formed, its location on the image plane is not correct. Further-
more, the amount of distortion usually increases with increasing
image height. The effect of this can be seen as two different kinds
of distortion: pincushion and barrel (see figure 1.20). Distortion
does not lower system resolution; it simply means that the image
shape does not correspond exactly to the shape of the object.
Distortion is a separation of the actual image point from the
paraxially predicted location on the image plane and can be
expressed either as an absolute value or as a percentage of the
paraxial image height.

It should be apparent that a lens or lens system has opposite
types of distortion depending on whether it is used forward or back-
ward. This means that if a lens were used to make a photograph,
and then used in reverse to project it, there would be no distortion
in the final screen image. Also, perfectly symmetrical optical systems
at 1:1 magnification have no distortion or coma.

CHROMATIC ABERRATION 

The aberrations previously described are purely a function of the
shape of the lens surfaces, and can be observed with monochro-
matic light. There are, however, other aberrations that arise when
these optics are used to transform light containing multiple
wavelengths.

The index of refraction of a material is a function of wavelength.
Known as dispersion, this is discussed in Chapter 4, Material
Properties. From Snell’s law (see equation 1.20), it can be seen that
light rays of different wavelengths or colors will be refracted at
different angles since the index is not a constant. Figure 1.21 shows
the result when polychromatic collimated light is incident on a pos-
itive lens element. Because the index of refraction is higher for
shorter wavelengths, these are focused closer to the lens than the
longer wavelengths. Longitudinal chromatic aberration is defined
as the axial distance from the nearest to the farthest focal point.

As in the case of spherical aberration, positive and negative
elements have opposite signs of chromatic aberration. Once again,
by combining elements of nearly opposite aberration to form a
doublet, chromatic aberration can be partially corrected. It is  nec-
essary to use two glasses with different dispersion characteristics,
so that the weaker negative element can balance the aberration of
the stronger, positive element.
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Achromatic Doublets Are Superior 
to Simple Lenses
Because achromatic doublets correct for spherical 
as well as chromatic aberration, they are often
superior to simple lenses for focusing collimated 
light or collimating point sources, even in purely
monochromatic light. 

Although there is no simple formula that can be
used to estimate the spot size of a doublet, the
tables on page 1.26  give sample values that can be
used to estimate the performance of other catalog
achromats.

APPLICATION NOTE

LATERAL COLOR

Lateral color is the difference in image height between blue and
red rays. Figure 1.22 shows the chief ray of an optical system
consisting of a simple positive lens and a separate aperture. Because
of the change in index with wavelength, blue light is refracted more
strongly than red light, which is why rays intercept the image plane
at different heights. Stated simply, magnification depends on color.
Lateral color is very dependent on system stop location. 

For many optical systems, the third-order term is all that may
be needed to quantify aberrations. However, in highly corrected
systems or in those having large apertures or a large angular field
of view, third-order theory is inadequate. In these cases, exact ray
tracing is absolutely essential.

aperture

red light ray lateral color

blue light ray

focal plane

Figure 1.22 Lateral color
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Figure 1.23 Aberrations of positive singlets at infinite conjugate ratio as a function of shape

Aberrations described in the preceding section are highly
dependent on application, lens shape, and material of the lens (or,
more exactly, its index of refraction). The singlet shape that minimizes
spherical aberration at a given conjugate ratio is called best-form.
The criterion for best-form at any conjugate ratio is that the marginal
rays are equally refracted at each of the lens/air interfaces. This
minimizes the effect of sin v ≠ v. It is also the criterion for minimum
surface-reflectance loss. Another benefit is that absolute coma is
nearly minimized for best-form shape, at both infinite and unit
conjugate ratios.

To further explore the dependence of aberrations on lens shape, it
is helpful to make use of the Coddington shape factor, q, defined as

Figure 1.23 shows the transverse and longitudinal spherical
aberration of a singlet lens as a function of the shape factor, q. In this
particular instance, the lens has a focal length of 100 mm, operates
at f/5, has an index of refraction of 1.518722 (BK7 at the mercury
green line, 546.1 nm), and is being operated at the infinite conjugate
ratio. It is also assumed that the lens itself is the aperture stop. An
asymmetric shape that corresponds to a q-value of about 0.7426 for
this material and wavelength is the best singlet shape for on-axis
imaging. Best-form shapes are used in Melles Griot laser-line-focusing
singlet lenses. It is important to note that the best-form shape is
dependent on refractive index. For example, with a high-index
material, such as silicon, the best-form lens for the infinite conju-
gate ratio is a meniscus shape.

q =  
(r + r )
(r r )

2 1

2 1

  

 4 
. (1.23)

At infinite conjugate with a typical glass singlet, the plano-convex
shape (q = 1), with convex side toward the infinite conjugate, performs
nearly as well as the best-form lens. Because a plano-convex lens costs
much less to manufacture than an asymmetric biconvex singlet, these
lenses are quite popular. Furthermore, this lens shape exhibits near-
minimum total transverse aberration and near-zero coma when used
off axis, thus enhancing its utility.

For imaging at unit magnification (s = s″ = 2f), a similar analysis
would show that a symmetric biconvex lens is the best shape. Not
only is spherical aberration minimized, but coma, distortion, and
lateral chromatic aberration exactly cancel each other out. These
results are true regardless of material index or wavelength, which
explains the utility of symmetric convex lenses, as well as symmetrical
optical systems in general. However, if a remote stop is present,
these aberrations may not cancel each other quite as well.

For wide-field applications, the best-form shape is definitely not
the optimum singlet shape, especially at the infinite conjugate ratio,
since it yields maximum field curvature. The ideal shape is determined
by the situation and may require rigorous ray-tracing analysis.

It is possible to achieve much better correction in an optical sys-
tem by using more than one element. The cases of an infinite
conjugate ratio system and a unit conjugate ratio system are
discussed in the following section.
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PLANO-CONVEX LENS

ray f-numbers

1.9
2.5
3.8
7.5

1.5

1.9
2.5
3.8
7.5

1.5

ACHROMAT

paraxial image plane

01 LPX 023

01 LAO 014

Figure 1.24 Single-element plano-convex lens compared
with a two-element achromat

Lens Combinations

INFINITE CONJUGATE RATIO

As shown in the previous discussion, the best-form singlet lens
for use at infinite conjugate ratios is generally nearly plano-con-
vex. Figure 1.24 shows a plano-convex lens (01 LPX 023) with
incoming collimated light at a wavelength of 546.1 nm. This draw-
ing, including the rays traced through it, is shown to exact scale. The
marginal ray (ray f-number 1.5) strikes the paraxial focal plane sig-
nificantly off the optical axis.

This situation can be improved by using  a two-element system.
The second part of the figure shows a precision achromat (01 LAO014),
which consists of a positive low-index (crown glass) element cemented
to a negative meniscus high-index (flint glass) element. This is drawn
to the same scale as the plano-convex lens. No spherical aberration
can be discerned in the lens. Of course, not all of the rays pass exactly
through the paraxial focal point; however, in this case, the departure
is measured in micrometers, rather than in millimeters, as in the case
of the plano-convex lens. Additionally, chromatic aberration (not
shown) is much better corrected in the doublet. Even though these
lenses are known as achromatic doublets, it is important to remember
that even with monochromatic light the doublet’s performance is
superior.

Figure 1.24 also shows the f-number at which singlet performance
becomes unacceptable. The ray with f-number 7.5 practically inter-
cepts the paraxial focal point, and the f/3.8 ray is fairly close. This use-
ful drawing, which can be scaled to fit a plano-convex lens of any focal
length, can be used to estimate the magnitude of its spherical aberration,
although lens thickness affects results slightly.

UNIT CONJUGATE RATIO

Figure 1.25 shows three possible systems for use at the unit
conjugate ratio. All are shown to the same scale and using the
same ray f-numbers with a light wavelength of 546.1 nm. The first
system is a symmetric biconvex lens (01 LDX 027), the best-form
singlet in this application. Clearly, significant spherical aberration
is present in this lens at f/2.7. Not until f/13.3 does the ray closely
approach the paraxial focus.

A dramatic improvement in performance is gained by using two
identical plano-convex lenses with convex surfaces facing and nearly
in contact. Those shown in figure 1.25 are both 01 LPX 081. The com-
bination of these two lenses yields almost exactly the same focal
length as the biconvex lens. To understand why this configuration
improves performance so dramatically, consider that if  the bicon-
vex lens were split down the middle, we would have two identical
plano-convex lenses, each working at an infinite conjugate ratio,
but with the convex surface toward the focus. This orientation is
opposite to that shown to be optimum for this shape lens. On the other
hand, if these lenses are reversed, we have the system just described
but with a better correction of the spherical aberration.

The previous examples indicate that an achromat is superior in
performance to a singlet when used at the infinite conjugate ratio
and at low f-numbers. Since the unit conjugate case can be thought
of as two lenses, each working at the infinite conjugate ratio, the next
step is to replace the plano-convex singlets with achromats, yielding
a four-element system. The third part of figure 1.25 shows a system
composed of two 01 LAO 037 lenses. Once again, spherical aberration
is not evident, even in the f/2.7 ray.
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SYMMETRIC BICONVEX LENS

ray f-numbers

IDENTICAL PLANO-CONVEX LENSES

IDENTICAL ACHROMATS
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6.7
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paraxial image plane

01 LDX 027
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Figure 1.25 Three possible systems for use at the unit conjugate ratio
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Rayleigh Criterion
In imaging applications, spatial resolution is ultimately 
limited by diffraction. Calculating the maximum possible 
spatial resolution of an optical system requires an 
arbitrary definition of what is meant by resolving two 
features. In the Rayleigh criterion, it is assumed that
two separate point sources can be resolved when the
center of the Airy disc from one overlaps the first
dark ring in the diffraction pattern of the second. In
this case, the smallest resolvable distance, d, is

d  0.61 
N.A.

  1.22  f/#= =l
l .

APPLICATION NOTE

Figure 1.26 Huygen’s principle

aperture

secondary
wavelets

wavefront wavefront

some light diffracted
into this region

In all light beams, some energy is spread outside the region pre-
dicted by rectilinear propagation. This effect,  known as diffrac-
tion, is a fundamental and inescapable physical phenomenon.

Diffraction can be understood by considering the wave nature
of light. Huygen’s principle (figure 1.26) states that each point on
a propagating wavefront is an emitter of secondary wavelets. The
combined focus of these expanding wavelets forms the propagating
wave. Interference between the secondary wavelets gives rise to a
fringe pattern that rapidly decreases in intensity with increasing
angle from the initial direction of propagation. Huygen’s principle
nicely describes diffraction, but rigorous explanation demands a
detailed study of wave theory.

Diffraction effects are traditionally classified into either Fresnel
or Fraunhofer types. Fresnel diffraction is primarily concerned
with what happens to light in the immediate neighborhood of a
diffracting object or aperture. It is thus only of concern when the
illumination source is close to this aperture or object. Consequently,
Fresnel diffraction is rarely important in most optical setups.

Fraunhofer diffraction, however, is often very important. This is
the light-spreading effect of an aperture when the aperture (or
object) is illuminated with an infinite source (plane-wave illumi-
nation) and the light is sensed at an infinite distance (far-field) from
this aperture.

From these overly simple definitions, one might assume that
Fraunhofer diffraction is important only in optical systems with
infinite conjugate, whereas Fresnel diffraction equations should be
considered at finite conjugate ratios. Not so. A lens or lens system
of finite positive focal length with plane-wave input maps the far-
field diffraction pattern of its aperture onto the focal plane; there-
fore, it is Fraunhofer diffraction that determines the limiting
performance of optical systems. More generally, at any conjugate
ratio, far-field angles are transformed into spatial displacements
in the image plane.

CIRCULAR APERTURE

Fraunhofer diffraction at a circular aperture dictates the
fundamental limits of performance for circular lenses. It is  important
to remember  that the spot size, caused by diffraction, of a circular
lens is

d = 2.44 l f/#

where d is the diameter of the focused spot produced from plane-
wave illumination and l is the wavelength of light being focused.
Notice that it is the f-number of the lens, not its absolute diameter,
that determines this limiting spot size.

The diffraction pattern resulting from a uniformly illuminated cir-
cular aperture actually consists of a central bright region, known as
the Airy disc (see figure 1.27), which is surrounded by a number of much
fainter rings. Each ring is separated by a circle of zero intensity. The
irradiance distribution in this pattern can be described by 

(1.24)

I  =  I  
2J (x)

x
 x 0

1
2











J (x) =  Bessel function of the first kind of order unity

    x  =  
D

sin 

1

π
l

v

(1.25)

where l =  wavelength
D= aperture diameter
v = angular radius from pattern maximum.

J (x) =  x ( 1)
x

(n 1)!n!2
1

n+1

n=1

2n 2

2n 1
4

4 

4

4

∞

∑

where I0 = peak irradiance in image

This useful formula shows the far-field irradiance distribution from
a uniformly illuminated circular aperture of diameter, D.

Diffraction Effects
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where w is the slit width, p has its usual meaning, and D, w, and l
are all in the same units (preferably millimeters).

Linear instead of angular field positions are simply found from 

r = s″ tan (v)

where s″ is the secondary conjugate distance. This last result is often
seen in a different form, namely the diffraction-limited spot-size
equation. For a circular lens that was stated at the outset of this
section:
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AIRY DISC DIAMETER = 2.44 l f/#

Figure 1.27 Center of a typical diffraction pattern for a
circular aperture

Ring or Band
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Intensity
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in Ring
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Central Maximum

First Dark

First Bright

Second Dark

Second Bright

Third Dark

Third Bright

Fourth Dark

Fourth Bright

Fifth Dark

0.0

1.22p

1.64p

2.23p

2.68p

3.24p

3.70p

4.24p

4.71p

5.24p

1.0

0.0

0.0175

0.0

0.0042

0.0

0.0016

0.0

0.0008

0.0

83.8

7.2

2.8

1.5

1.0

0.0

1.00p

1.43p

2.00p

2.46p

3.00p

3.47p

4.00p

4.48p

5.00p

1.0

0.0

0.0472

0.0

0.0165

0.0

0.0083

0.0

0.0050

0.0

90.3

4.7

1.7

0.8

0.5

Circular Aperture Slit Aperture

Note: Position variable (x) is defined in the text.

Energy Distribution in the Diffraction Pattern of a Circular or Slit Aperture

SLIT APERTURE

A slit aperture, which is mathematically simpler, is useful in
relation to cylindrical optical elements. The irradiance distribution
in the diffraction pattern of a uniformly illuminated slit aperture is
described by 

I  =   I
sin x

xx 0

2












I =  peak irradiance in image

x =  
 w sin 

0

p v

l

(1.26)

where l = wavelength
w = slit width
v = angular deviation from pattern maximum.

where

ENERGY DISTRIBUTION TABLE

The table below shows the major features of pure (unaberrated)
Fraunhofer diffraction patterns of circular and slit apertures. The
table shows the position, relative intensity, and percentage of total
pattern energy corresponding to each ring or band. It is especially
convenient to characterize positions in either pattern with the same
variable x. This variable is related to field angle in the circular
aperture case by 

sin  =  
x

w
v

l

p

sin  =  
x

D
v

l

p

d =  2.44  f/#l

(1.27)

(1.28)

(1.29)

(see 1.24)

where D is the aperture diameter. For a slit aperture, this relationship
is given by 

This value represents the smallest spot size that can be achieved
by an optical system with a circular aperture of a given f-number.
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Figure 1.28 Fraunhofer diffraction pattern of a singlet slit superimposed on the Fraunhofer diffraction pattern of a
circular aperture

SLIT APERTURE
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Note :  J (x) is the Bessel function

of the first kind of order unity.
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v

 

The graph in figure 1.28 shows the form of both circular and slit
aperture diffraction patterns when plotted on the same normalized
scale. Aperture diameter is equal to slit width so that patterns between
x-values and angular deviations in the far-field are the same.

GAUSSIAN BEAMS

Apodization, or nonuniformity of aperture irradiance, alters
diffraction patterns. If pupil irradiance is nonuniform, the formu-
las and results given previously do not apply. This is important to
remember because most laser-based optical systems do not have
uniform pupil irradiance. The output beam of a laser operating
in the TEM00 mode has a smooth Gaussian irradiance profile.
Formulas to determine the focused spot size from such a beam are
discussed  in Chapter 2, Gaussian Beam Optics. Furthermore,

when dealing with Gaussian beams, the location of the focused spot
also departs from that predicted by the paraxial equations given
in this chapter. This is also detailed in chapter 2.
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f

v min

v min = source size
             f

Figure 1.29 Collimating an incandescent source

Having discussed the most important factors that affect a lens or
a lens system’s performance, we will now address the practical matter
of selecting the optimum catalog components for a particular task.

The following useful relationships are important to keep in mind
throughout the selection process:

$ Diffraction-limited spot size = 2.44 ¬ f/# 

$ Approximate on-axis spot size 
of a plano-convex lens at the infinite 
conjugate resulting from spherical aberration = 

$ Optical invariant =                            

Example 1: Collimating an Incandescent Source

Produce a collimated beam from a quartz halogen bulb having
a 1-mm-square filament. Collect the maximum amount of light
possible and produce a beam with the lowest possible divergence
angle.

This problem, illustrated in figure 1.29, involves the typical trade-
off between light-collection efficiency and resolution (where a beam
is being collimated rather than focused, resolution is defined by beam
divergence). To collect more light, it is necessary to work at a low
f-number, but because of aberrations, higher resolution (lower diver-
gence angle) will be achieved by working at a higher f-number.

In terms of resolution, the first thing to realize is that the
minimum divergence angle (in radians) that can be achieved using
any lens system is the source size divided by system focal length. An
off-axis ray (from the edge of the source) entering the first principal
point of the system exits the second principal point at the same
angle. Therefore, increasing system focal length improves this lim-
iting divergence because the source appears smaller.

An optic that can produce a spot size of 1 mm when focusing a
perfectly collimated beam is therefore required. Since source size is
inherently limited, it is pointless to strive for better resolution.  This
level of resolution can be achieved easily  with a plano-convex lens.

m =  
NA

NA"
.

0.067 f

f/#3

While angular divergence decreases with increasing focal length,
spherical aberration of a plano-convex lens increases with increasing
focal length. To determine the appropriate focal length, set the
spherical aberration formula for a plano-convex lens equal to the
source (spot) size: 

This ensures a lens that meets the minimum performance needed.

To select a focal length, make an arbitrary f-number choice. As
can be seen from the relationship, as we lower the f-number (increase
collection efficiency), we decrease the focal length, which will worsen
the resultant divergence angle (minimum divergence = 1 mm/f).

In this example, we will accept f/2 collection efficiency, which gives
us a focal length of about 120 mm. For f/2 operation we would
need a minimum diameter of 60 mm. The 01 LPX 209 fits this
specification exactly. Beam divergence would be about 8 mrad.

Finally, we need to verify that we are not operating below the
theoretical diffraction limit. In this example, the numbers (1-mm
spot size) indicate that we are not, since

diffraction-limited spot size = 2.44 ! 0.5 mm ! 2 = 2.44 mm.

Example 2: Coupling an Incandescent Source into a Fiber

On pages 1.6 and 1.7 we considered a system in which the output
of an incandescent bulb with a filament of 1 mm in diameter was
to be coupled into an optical fiber with a core diameter of 100 µm
and a numerical aperture of 0.25. From the optical invariant and
other constraints given in the problem, we determined that system
focal length is 9.1 mm, diameter = 5 mm, s = 100 mm, s″ = 10 mm,
NA″ = 0.25, and NA = 0.025 (or f/2 and f/20). The singlet lenses
that match these specifications are the plano-convex 01 LPX 003
or biconvex lenses 01 LDX 003 and 01 LDX 005. The closest
achromat would be the 01 LAO 001.

0.067 f

f/#
 =  1 mm.

3
(see eq. 1.22)

Lens Selection
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s = f s"= f

Figure 1.30 Symmetric fiber-to-fiber coupling

We can immediately reject the biconvex lenses because of
spherical aberration. We can estimate the performance of the
01 LPX 003 on the focusing side by using our spherical aberration
formula: 

We will ignore, for the moment, that we are not working at the
infinite conjugate.

This is slightly smaller than the 100-µm spot size we’re trying
to achieve. However, since we are not working at infinite conju-
gate, the spot size will be larger than given by our simple calcula-
tion. This lens is therefore likely to be marginal in this situation,
especially if we consider chromatic aberration. A better choice is the
achromat. Although a computer ray trace would be required to
determine its exact performance, it is virtually certain to provide ade-
quate  performance.

Example 3: Symmetric Fiber-to-Fiber Coupling

Couple an optical fiber with an 8-µm core and a 0.15 numerical
aperture into another fiber with the same characteristics. Assume
a wavelength of 0.5 µm.

This problem, illustrated in figure 1.30, is essentially a 1:1 imaging
situation. We want to collect and focus at a numerical aperture of
0.15 or f/3.3, and we need a lens with an 8-µm spot size at this
f-number. Based on the lens combination discussion on page 1.8,
our most likely setup is either a pair of identical plano-convex lenses
or achromats, faced front to front. To determine the necessary focal 

spot size =  
0.067 (10)

2
 =  84 m.

3
m

0.067 f

3.3
 =  0.008 mm.

3

2.44  0.5 m   3.3  =  4 m .!  !  m m

length for a plano-convex lens, we again use the spherical aberra-
tion estimate formula:

This formula yields a focal length of 4.3 mm and a minimum
diameter of 1.3 mm. The 01 LPX 423 meets these criteria. The
biggest problem with utilizing these tiny, short focal length lenses
is the practical considerations of handling, mounting, and position-
ing them. Since using a pair of longer focal length singlets would
result in unacceptable performance, the next step might be to 
use a pair of the slightly longer focal length, larger achromats, 
such as the 01 LAO 001. The performance data, given on page 1.26,
shows that this combination does provide the required 8-mm spot
diameter.

Because fairly small spot sizes are being considered here, it is
important to make sure that the system is not being asked to work
below the diffraction limit:

Since this is half the spot size caused by aberrations, it can be
safely assumed that diffraction will not play a significant role here.

An entirely different approach to a fiber-coupling task such as
this would be a pair of spherical ball lenses (06 LMS series), listed
on page 15.15, or one of the gradient-index lenses (06 LGT series),
listed on page 15.19.
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MELLES GRIOT LENS DATABASE

A database containing prescription information
for most of the optical components listed in this
catalog is included in the Melles Griot catalog on 
CD-ROM. This database, in a Zemax format,
facilitates the determination of

• Spot size

• Prescription information

• Wavefront distortion.

Please contact our sales department for your free
Melles Griot Catalog on CD-ROM:
Phone: 1-800-835-2626 / (949) 261-5600
FAX: (949) 261-7790
E-mail: mglit@irvine.mellesgriot.com

Non-US customers should contact the nearest
Melles Griot office (see back cover).

Example 4: Diffraction-Limited Performance

Determine at what f-number a plano-convex lens being used at
an infinite conjugate ratio with 0.5-mm wavelength light becomes
diffraction limited (i.e., the effects of diffraction exceed those caused
by aberration).

To solve this problem, set the equations for diffraction-limited spot
size and third-order spherical aberration equal to each other. The
result depends upon focal length, since aberrations scale with focal
length, while diffraction is solely dependent upon f-number. Sub-
stituting some common focal lengths into this formula, we get f/8.6
at f = 100 mm, f/7.2 at f = 50 mm, and f/4.8 at f = 10 mm.

2.44  0.5 m  f/#  =  
0.067  f

f/#
or

f/# =  (54.9  f)

3

1/4

!  !  
!   

!  

m

.

When working with these focal lengths (and under the conditions
previously stated), we can assume essentially diffraction-limited
performance above these f-numbers. Keep in mind, however, that
this treatment does not take into account manufacturing tolerances
or chromatic aberration, which will be present in polychromatic
applications.
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Spot Size

01 LPX 049 01 LAO 024

01 LAO 059 &

01 LAM 059

f/2

f/3

f/5

f/10

350

90

17

15 (DL)

80

11

8 (DL)

15 (DL)

4

5 (DL)

8 (DL)

15 (DL)

Spot Size (µm)*

*Diffraction-limited performance is indicated by DL.

Focal Length = 30 mm

01 LDX 005 01 LPX 005 01 LAO 001

f/2

f/3

f/5

f/10

550

120

30

15 (DL)

95

25

8 (DL)

15 (DL)

4

5 (DL)

8 (DL)

15 (DL)

Spot Size (µm)*

Focal Length = 10 mm

*Diffraction-limited performance is indicated by DL.

01 LDX 123 01 LPX 127 01 LAO 079 01 LAO 126 & 01 LAM 126

f/2

f/3

f/5

f/10

800

225

42

15 (DL)

600

200

30

15 (DL)

80

35

9

15 (DL)

6

5 (DL)

8 (DL)

15 (DL)

Focal Length = 60 mm

Spot Size (µm)*

*Diffraction-limited performance is indicated by DL.

In general, the performance of a lens or lens system in a specific
circumstance should be determined by an exact trigonometric ray
trace. Melles Griot applications engineers can supply ray-trace
data for particular lenses and systems of catalog components on
request. However, for certain situations, some simple guidelines
can be used for lens selection. The optimum working conditions
for some of the lenses in this catalog have already been presented.
The following tables give some quantitative results for a variety
of simple and compound lens systems that can be constructed
from standard catalog optics.

In interpreting these tables, remember that these theoretical val-
ues obtained from computer ray tracing consider only the effects
of ideal geometric optics. Effects of manufacturing tolerances have
not been considered. Furthermore, remember that using more than
one element provides a higher degree of correction but makes
alignment more difficult. When actually choosing a lens or a lens
system, it is important to note the tolerances and specifications
clearly described for each Melles Griot lens in the product listings.

The tables give spot size for a variety of lenses used at several dif-
ferent f-numbers. All the tables are for on-axis, uniformly illuminated,
collimated input light at 632.8 nm. They assume that the lens is
facing in the direction that produces a minimum spot size. When
the spot size caused by aberrations is smaller or equal to the
diffraction-limited spot size, the notation “DL’’ appears next to
the entry. The shorter focal length lenses produce smaller spot sizes
because aberrations increase linearly as a lens is scaled up.

The effect on spot size caused by spherical aberration is strongly
dependent on f-number. For a plano-convex singlet, spherical
aberration is inversely dependent on the cube of the f-number. For
doublets, this relationship can be even higher. On the other hand,
the spot size caused by diffraction increases linearly with f-number.
Thus, for some lens types, spot size at first decreases and then
increases with f-number, meaning that there is some optimum
performance point where both aberrations and diffraction combine
to form a minimum.

Unfortunately, these results cannot be generalized to situations
where the lenses are used off axis. This is particularly true of the
achromat/aplanatic meniscus lens combinations because their
performance degrades rapidly off axis.
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Aberration Balancing

longitudinal spherical aberration (3rd order)  =    kf
                                                                                  f/#2

symmetric-concave 01 LDK

symmetric-convex 01 LDXplano-convex (reversed) 01 LPX plano-convex (normal) 01 LPX

plano-concave (reversed) 01 LPK plano-concave (normal) 01 LPK

aberration
coefficient
(k)

1.069 0.403 0.272

positive lenses

negative lenses

Figure 1.31 Third-order longitudinal spherical aberration of typical lens shapes

To improve system performance, optical designers make sure
that the total aberration contribution from all surfaces taken together
sums to nearly zero. Normally, such a process requires computer-
ized analysis and optimization. However, there are some simple
guidelines that can be used to achieve this with lenses available in
this catalog. This approach can yield systems that operate at a much
lower f-number than can usually be achieved with simple lenses.

Specifically, we will examine how to null the spherical aberration
from two or more lenses in collimated, monochromatic light. Thus,
this technique will be most useful for laser beam focusing and
expanding.

Figure 1.31 shows the third-order longitudinal spherical
aberration coefficients for four of the most common positive and
negative lens shapes when used with parallel, monochromatic
incident light. The plano-convex and plano-concave lenses both
show minimum spherical aberration when oriented with their curved
surface facing the incident parallel beam. All other configurations
exhibit larger amounts of spherical aberration. With these lens types,
it is now possible to show how various systems can be corrected for
spherical aberration.

A two-element laser beam expander is a good starting exam-
ple. In this case, two lenses are separated by a distance which is the
sum of their focal lengths, so that the overall system focal length is
infinite. This system will not focus incoming collimated light, but
it will change the beam diameter. By definition, each of the lenses
is operating at the same f-number.

The equation for longitudinal spherical aberration shows that
for two lenses with the same f-number, aberration varies directly with
the focal lengths of the lenses. The sign of the aberration is the same
as focal length. Thus, it should be possible to correct the spherical 

aberration of this Galilean-type beam expander, which consists of
a positive focal length objective and a negative diverging lens.

If a plano-convex lens of focal length f1 oriented in the normal
direction is combined with a plano-concave lens of focal length f2
oriented in its reverse direction, the total spherical aberration of
the system is

LSA =  
0.272 f

f/#
  

1.069 f

f/#
1

2
2

2
+ .

f
f

 =  
1.069
0.272

 =  3.93.1

2

4 4

(1.30)

After setting this equal to zero, we obtain

To make the magnitude of aberration contributions of the two
elements equal so they will cancel out, and thus correct the system,
select the focal length of the positive element to be 3.93 times that
of the negative element.

Figure 1.32 shows a beam-expander system made up of catalog
elements, in which the focal length ratio is 4:1. This simple system is
corrected to about 1/6 wavelength at 632.8 nm, even though the objec-
tive is operating at f/4 with a 20-mm aperture diameter. This is remark-
ably good wavefront correction for such a simple system; one would
normally assume that a doublet objective would be needed and a
complex diverging lens as well. This analysis does not take into
account manufacturing tolerances.

A beam expander of lower magnification can also be derived
from this information. If a symmetric-convex objective is used
together with a reversed plano-concave diverging lens, the aberration
coefficients are in the ratio of 1.069/0.403 =2.65. Figure 1.32 shows
a system of catalog lenses that provides a magnification of 
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a) CORRECTED 4!BEAM EXPANDER

c) SPHERICALLY CORRECTED 25-mm EFL f/2.0 OBJECTIVE

f= 80 mm
22.4-mm diameter
plano-convex
01 LPX 149

f= 420 mm
10-mm diameter
plano-concave
01 LPK 001

f= 425 mm
25-mm diameter
plano-concave
01 LPK 003

f= 50 mm (2)
27-mm diameter
plano-convex
01 LPX 108

b) CORRECTED 2.7x BEAM EXPANDER

f= 420 mm
10-mm diameter
plano-concave
01 LPK 001

f= 54 mm
32-mm diameter
symmetric-convex
01 LDX 119

Figure 1.32 Combining catalog lenses for aberration
balancing

The material presented in this section is based on the work of John
F. Forkner.

Melles Griot now offers a selection of UV optics
ranging from 193 to 355 nm. See Chapter 16,
UV Optics, for details.

UV OPTICS

2.7 (the closest possible given the available focal lengths). The
maximum wavefront error in this case is only 1/4 wave, even though
the objective is working at f/3.3.

The relatively fast speed of these objectives is a great advantage
in minimizing the length of these beam expanders. They would be
particularly useful with Nd:YAG and argon-ion lasers, which tend
to have large output beam diameters.

These same principles can be utilized to create high numerical
aperture objectives that might be used as laser focusing lenses.
Figure 1.32 shows an objective consisting of an initial negative
element, followed by two identical plano-convex positive elements.
Again, all of the elements operate at the same f-number, so that
their aberration contributions are proportional to their focal lengths.
To obtain zero total spherical aberration from this configuration,
we must satisfy

Therefore, a corrected system should result if the focal length of
the negative element is just about half that of each of the positive
lenses. In this case, f1 = 425 mm and f2 = 50 mm yield a total system
focal length of about 25 mm and an f-number of approximately
f/2. This objective, corrected to 1/6 wave, has the additional advan-
tage of a very long working distance.

1.069 f  +  0.272 f  +  0.272 f  =  0

or

f
f

 =  0.51.

1 2 2

1

2

4
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Definition of Terms

f

H″

A

tc

te

F″
F

B
f

fb

H

ff

ray from object at infinity
ray from object at infinity

front (primary) 
focal point

primary vertex A1

rear (secondary) 
focal point

secondary principal surface
secondary principal point

primary principal surface

primary principal point

reversed ray locates front focal 
point or primary principal surface

rear focal pointfront focal point

A2 secondary vertex

optical axis

r1

r2

Figure 1.33 Focal length and focal points

f = effective focal length; 
may be positive (as shown) 
or negative

ff = front focal length

fb = back focal length

A = front focus to front 
edge distance

B = rear edge to rear 
focus distance

te = edge thickness

tc = center thickness

r1 = radius of curvature of first
surface (positive if center of
curvature is to right)

r2 = radius of curvature of second
surface (negative if center of
curvature is to left)

FOCAL LENGTH (f)

Two distinct terms describe the focal lengths associated with
every lens or lens system. The effective focal length (EFL) or
equivalent focal length (denoted f in figure 1.33) determines
magnification and hence the image size. The term f appears
frequently in the lens formulas and tables of standard lenses.
Unfortunately, f is measured with reference to principal points
which are usually inside the lens so the meaning of f is not
immediately apparent when a lens is visually inspected.

The second type of focal length relates the focal plane positions
directly to landmarks on the lens surfaces (namely the vertices)
which are immediately recognizable. It is not simply related to image
size but is especially convenient for use when one is concerned about
correct lens positioning or mechanical clearances. Examples of this
second type of focal length are the front focal length (FFL, denoted
ff in figure 1.33) and the back focal length (BFL, denoted fb).

The convention in all of the figures (with the exception of a single
deliberately reversed ray) is that light travels from left to right.

FOCAL POINT (F OR F″)

Rays that pass through or originate at either focal point must be,
on the opposite side of the lens, parallel to the optical axis. This
fact is the basis for locating both focal points.

PRIMARY PRINCIPAL SURFACE

Let us imagine that rays originating at the front focal point F (and
therefore parallel to the optical axis after emergence from the oppo-
site side of the lens) are singly refracted at some imaginary surface,
instead of twice refracted (once at each lens surface) as actually
happens. There is a unique imaginary surface, called the principal
surface, at which this can happen.

To locate this unique surface, consider a single ray traced from
the air on one side of the lens, through the lens and into the air on
the other side. The ray is broken into three segments by the lens.
Two of these are external (in the air), and the third is internal (in
the glass). The external segments can be extended to a common
point of intersection (certainly near, and usually within, the lens). The 
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principal surface is the locus of all such points of intersection of
extended external ray segments. The principal surface of a perfectly
corrected optical system is a sphere centered on the focal point.

Near the optical axis, the principal surface is nearly flat, and
for this reason, it is sometimes referred to as the principal plane.

SECONDARY PRINCIPAL SURFACE

This term is defined analogously to the primary principal surface,
but it is used for a collimated beam incident from the left and focused
to the rear focal point F ≤ on the right. Rays in that part of the
beam nearest the axis can be thought of as once refracted at the
secondary principal surface, instead of being refracted by both lens
surfaces.

PRIMARY PRINCIPAL POINT (H)
OR FIRST NODAL POINT

This point is the intersection of the primary principal surface with
the optical axis.

SECONDARY PRINCIPAL POINT (H≤) 
OR SECONDARY NODAL POINT

This point is the intersection of the secondary principal surface
with the optical axis.

CONJUGATE DISTANCES (S AND S″)

The conjugate distances are the object distance, s, and image
distance, s″. Specifically, s is the distance from the object to H, and
s″ is the distance from H″ to the image location. The term infinite
conjugate ratio refers to the situation in which a lens is either focusing
incoming collimated light, or being used to collimate a source (there-
fore either s or s″ is infinity).

PRIMARY VERTEX (A1)

The primary vertex is the intersection of the primary lens surface
with the optical axis.

SECONDARY VERTEX (A2)

The secondary vertex is the intersection of the secondary lens
surface with the optical axis.

EFFECTIVE FOCAL LENGTH (EFL, f)

Assuming that the lens is surrounded by air or vacuum (refractive
index 1.0), this is both the distance from the front focal point (F) to the
primary principal point (H) and the distance from the secondary princi-
pal point (H″) to the rear focal point (F″). Later we use f to designate
the paraxial effective focal length for the design wavelength (¬0).

FRONT FOCAL LENGTH (ff)

This length is the distance from the front focal point (F) to the
primary vertex (A1).

BACK FOCAL LENGTH (fb)

This length is the distance from the secondary vertex (A2) to
the rear focal point (F″ ).

EDGE-TO-FOCUS DISTANCES (A AND B)

A is the distance from the front focal point to the front edge of
the lens. B is the distance from the rear edge of the lens to the rear
focal point. Both distances are presumed always to be positive.

REAL IMAGE

A real image is one in which the light rays actually converge; 
if a screen were placed at the point of focus, an image would be
formed on it.

VIRTUAL IMAGE

A virtual image does not represent an actual convergence of light
rays. A virtual image can be viewed only by looking back through
the optical system, such as in the case of a magnifying glass.

F-NUMBER (F/#)

The f-number (also known as the focal ratio, relative aperture,
or speed) of a lens system is defined to be the effective focal length
divided by system clear aperture. Ray f-number is the conjugate
distance for that ray divided by the height at which it intercepts the
principal surface.

NUMERICAL APERTURE (NA)

The numerical aperture of a lens system is defined to be the sine
of the angle, v1, that the marginal ray (the ray that exits the lens
system at its outer edge) makes with the optical axis multiplied by
the index of refraction  (n) of the medium. The numerical aperture
can be defined for any ray as the sine of the angle made by that ray
with the optical axis multiplied by the index of refraction:

NA = n sin v.

MAGNIFICATION POWER

Often, positive lenses intended for use as simple magnifiers are
rated with a single magnification, such as 4#. To create a virtual
image for viewing with the human eye, in principle, any positive
lens can be used at an infinite number of possible magnifications.
However, there is usually a narrow range of magnifications that
will be comfortable for the viewer. Typically, when the viewer adjusts
the object distance so that the image appears to be essentially at  

f /# =  
f
φ

.

(1.31)
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Technical Reference
For further reading about the definitions and
formulas presented here, refer to the following
publications:

Rudolph Kingslake, Lens Design Fundamentals
(Academic Press) 

Rudolph Kingslake, Optical System Design
(Academic Press) 

Warren Smith, Modern Optical Engineering
(McGraw Hill).

If you need help with the use of definitions and
formulas presented in this catalog, our applications
engineers will be pleased to assist you.

APPLICATION NOTE

Thus, a 25-mm focal length positive lens would be a 10! magnifier.

DIOPTERS

Diopter is a term used to define the reciprocal of the focal length,
which is commonly used for ophthalmic lenses. The inverse focal
length of a lens expressed in diopters is

Thus, the smaller the focal length, the larger the power in diopters.

DEPTH OF FIELD AND DEPTH OF FOCUS

In an imaging system, depth of field refers to the distance in
object space over which the system delivers an acceptably sharp
image. The criteria for what is acceptably sharp is arbitrarily chosen
by the user; depth of field increases with increasing f-number.

For an imaging system, depth of focus is the range in image
space over which the system delivers an acceptably sharp image. In
other words, this is the amount that the image surface (such as a
screen or piece of photographic film) could be moved while main-
taining acceptable focus. Again, criteria for acceptability are defined
arbitrarily.

In nonimaging applications, such as laser focusing, depth of
focus refers to the range in image space over which the focused
spot diameter remains below an arbitrary limit.

magnification =  
250 mm

f
     (f in mm). (1.32)

diopters =  
1000

f
     (f in mm). (1.33)

infinity (which is a comfortable viewing distance for most individ-
uals), magnification is given by the relationship
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r>0

(r4s)

s > 0

d
2

Figure 1.34 Surface sagitta and radius of curvature

Paraxial Lens Formulas

PARAXIAL FORMULAS FOR LENSES IN AIR

The following formulas are based on the behavior of paraxial
rays, which are always very close and nearly parallel to the optical
axis. In this region, lens surfaces are always very nearly normal to
the optical axis, and hence all angles of incidence and refraction
are small. As a result, the sines of the angles of incidence and
refraction are small (as used in Snell’s law) and can be approximated
by the angles themselves (measured in radians).

The paraxial formulas do not include effects of spherical
aberration experienced by a marginal ray — a ray passing through
the lens near its edge or margin. All effective focal length values (f)
tabulated in this catalog are paraxial values which correspond to the
paraxial formulas.

The following paraxial formulas are valid for both thick and
thin lenses unless otherwise noted. The refractive index of the lens
glass, n, is the ratio of the speed of light in vacuum to the speed of
light in the lens glass. All other variables are defined in figure 1.33.

Focal Length

where n is the refractive index, tc is the center thickness, and the
sign convention previously given for the radii r1 and r2 applies. For
thin lenses, tc ≅ 0, and for plano lenses either r1 or r2 is infinite. In
either case the second term of the above equation vanishes, and we
are left with the familiar Lens Maker’s formula

1

f
 =  (n  1) 

1
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1
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 +  
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t

r r
 

1 2
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(1.35)

r  =  (r  s)  +  
d
2

s =  r  r   
d
2

  >  0

r =  
s
2

 +  
d
8s

2 2
2

2
2

2

4

4 4













.

r  =  (n 1) f  f   
ft

n

=  (n 1)  f 1 +  1  
t

nf

1
2 c

c

4 4

4 4

±














































1

f
 =  

2 (n 1)

r

(n 1)

nr
 t + 2r  1 cos arcsin

2r
 

1

2

1
2 c 1

1

4
4

4
4

f





























r  =  (n 1) f.1 4 

A H  =  
r t

n (r r ) +  t (n 1)

A H =  
r t

n (r r  +  t (n 1)

2
2 c

2 1 c

1
1 c

2 1 c

′′
4

 4 4 

4

 4 4 )

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

Surface Sagitta and Radius of Curvature 
(refer to figure 1.34)

An often useful approximation is to neglect s/2.

Symmetric Lens Radii (r2 = 5r1)

With center thickness constrained,

where, in the first form, the + sign is chosen for the square root if f is
positive, but the 4 sign must be used if f is negative. In the second
form, the + sign must be used regardless of the sign of f. With edge
thickness constrained, the equation for r1 becomes transcendental:

where Ω is the lens diameter. This equation can be solved by numerical
methods.

Plano Lens Radius

Since r2 is infinite, 

Principal-Point Locations (signed distances from vertices)

where the above sign convention applies.
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A =  f  +  s

B =  f  +  s

f 1

b 2

(1.53)

(1.54)
and

(1.44)

For symmetric lenses (r2 = 4r1),

If either r1 or r2 is infinite, l’Hôpital’s rule from calculus must be used.
Thus, referring to page 1.27, for plano-convex lenses in the correct
orientation,

For flat plates, by letting r1 → ∞ in a symmetric lens, we obtain
A1H = A2H″ = tc /2n. These results are useful in connection with
the following paraxial lens combination formulas.

Hiatus or Interstitium (principal-point separation)

which, in the thin-lens approximation (exact for plano lenses),
becomes

Solid Angle

The solid angle subtended by a lens, for an observer situated at an
on-axis image point, is

where this result is in steradians, and where

is the apparent angular radius of the lens clear aperture. For an
observer at an on-axis object point, use s instead of s″. To convert
from steradians to the more intuitive sphere units, simply divide
Q by 4p. If the Abbé sine condition is known to apply, ß may 
be calculated using the arc sine function instead of the arc 
tangent.

Back Focal Length

where the sign convention presented above applies to A2H″ and to
the radii. If r2 is infinite, l’Hôpital’s rule from calculus must be used,
whereby

Front Focal Length

where the sign convention presented above applies to A1H and to
the radii. If r1 is infinite, l’Hôpital’s rule from calculus must be used,
whereby

Edge-to-Focus Distances

For positive lenses,

where s1 and s2 are the sagittas of the first and second surfaces.
Bevel is neglected.

Magnification or Conjugate Ratio

PARAXIAL FORMULAS FOR 
LENSES IN ARBITRARY MEDIA

These formulas allow for the possibility of distinct and completely
arbitrary refractive indices for the object space medium (refractive
index n′), lens (refractive index n″), and image space medium (refractive
index n). In this situation, the effective focal length  assumes two
distinct values, namely f in object space and f″ in image space. It is
also necessary to distinguish the principal points from the nodal
points. The lens serves both as a lens and as a window separating
the object space and image space media.

Chpt. 1 Final  a  7/30/99  2:39 PM  Page 1.33



1.34 1 Visit Us OnLine! www.mellesgriot.com

Fu
nd

am
en

ta
l O

pt
ic

s
M

at
er

ia
l P

ro
pe

rt
ie

s
O

pt
ic

al
 S

pe
ci

fic
at

io
ns

G
au

ss
ia

n 
Be

am
 O

pt
ic

s
O

pt
ic

al
 C

oa
ti

ng
s

Figure 1.35 Symmetric lens with disparate object and image space indices

f

F

fb

index n′ = 1.51872 (BK7)

H

A1 A2

N

ff

index n"= 1.333 (water)index n = 1 (air or vacuum)

H″ F″N″

f″

The situation of a lens immersed in a homogenous fluid (fig-
ure 1.35) is included as a special case (n = n″). This case is of
considerable practical importance. The two values f and f″ are again
equal, so that the lens-combination formulas are applicable to
systems immersed in a common fluid. The general case (two different
fluids) is more difficult, and it must be approached by ray tracing on
a surface-by-surface basis.

LENS CONSTANT (k)

This number appears frequently in the following  formulas. It is
an explicit function of the complete lens prescription (both radii,
tc and n′ ) and both media indices (n and n″). This dependence is
implicit anywhere that k appears.

k =  
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(1.58)

xx  =  ff  =  
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k2
′′ ′′

′′
(1.59)

Effective Focal Lengths

Lens Formula (Gaussian form)

Lens Formula (Newtonian form)

where x = s4f and x″ = s″4f ″.

Principal-Point Locations
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(1.62)

(1.64)

n
f

 =  
n
f

 =  k.
′′
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(1.65)

(1.66)

(1.67)

Object-to-First-Principal-Point Distance

Second Principal-Point-to-Image Distance

Magnification

Lens Maker’s Formula

Nodal-Point Locations
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For Quick Approximations
Much time and effort can be saved by ignoring the
differences among f, fb, and ff in these formulas
(assume f = fb = ff) by thinking of s as the lens-to-
object distance, by thinking of s″ as the lens-to-image
distance, and by thinking of the sum of conjugate
distances s + s″ as being the object-to-image distance.
This is known as the thin-lens approximation.

APPLICATION NOTE

Physical Significance of the Nodal Points
A ray directed at the primary nodal point N of a lens
appears to emerge from the secondary nodal point
N″ without change of direction. Conversely, a ray
directed at N″ appears to emerge from N without
change of direction. At the infinite conjugate ratio, 
if a lens is rotated about a rotational axis orthogonal
to the optical axis at the secondary nodal point 
(i.e., if N″ is the center of rotation), the image
remains stationary during the rotation. This fact
is the basis for the nodal slide method for measuring
nodal-point location. The nodal points coincide with
their corresponding principal points when the image
space and object space refractive indices are equal (n
= n″). This makes the nodal slide method the most
precise method of principal-point location.

APPLICATION NOTE

Separation of Nodal Point 
from Corresponding Principal Point

HN = H″N″ = (n″4n)/k, positive for N to right of H 
and N″ to right of H″.

Back Focal Length

f  =  f  +  A H .b 2′′ ′′ (see eq. 1.49)

f  =  f A H.f 14 
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(see eq. 1.51)

(see eq.1.48)

(1.68)

and

Front Focal Length

Focal Ratios

The focal ratios are f/f and f ″/f, where f is the diameter of the
clear aperture of the lens.

Numerical Apertures

Solid Angles (in steradians)

To convert from steradians to spheres, simply divide by 4p.

Q ″ = 2p (1 4 cos v″)
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Principal-Point Locations

Figure 1.36 indicates approximately where the principal points fall
in relation to the lens surfaces for various standard lens shapes. The
exact positions depend on the index of refraction of the lens mater-
ial, and on the lens radii, and can be found by formula. In extreme
meniscus lens shapes (short radii or steep curves), it is possible that

both principal points will fall outside the lens boundaries. For
symmetric lenses, the principal points divide that part of the optical
axis between the vertices into three approximately equal segments.
For plano lenses, one principal point is at the curved vertex, and the
other is approximately one-third of the way to the plane vertex.

H″ F″ H″
F″

H″

H″
F″

F″

H″

F″

F″

H″

H″
F″

H″
F″

H″
F″

H″
F″

Figure 1.36 Principal points of common lenses
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