Diffraction Geometry

We wish to find the light electric field after a screen with a hole in it. This is a very general problem with far-reaching applications.

What is $E\left(x_{1}, y_{1}\right)$ at a distance z from the plane of the aperture?

Diffraction Solution

The field in the observation plane, $E\left(x_{1}, y_{I}\right)$, at a distance z from the aperture plane is given by:
$E\left(x_{1}, y_{1}, z\right)=\iint_{A\left(x_{0}, y_{0}\right)} h\left(x_{1}-x_{0}, y_{1}-y_{0}, z\right) E\left(x_{0}, y_{0}\right) d x_{0} d y_{0}$
where:

$$
\begin{aligned}
& h\left(x_{1}-x_{0}, y_{1}-y_{0}, z\right)=\frac{1}{i \lambda} \frac{\exp \left(i k r_{01}\right)}{r_{01}} \\
& r_{01}=\sqrt{z^{2}+\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}} \quad \begin{array}{l}
\text { Spherical } \\
\text { wave }
\end{array}
\end{aligned}
$$

A very complicated result! And we cannot approximate r_{01} in the exp by z because it gets multiplied by k, which is big, so relatively small changes in r_{01} can make a big difference!

Fraunhofer Diffraction: The Far Field

We can approximate r_{01} in the denominator by z, and if D is the size of the aperture, $D^{2} \geq x_{0}{ }^{2}+y_{0}{ }^{2}$, so when $k D^{2} / 2 z \ll 1$, the quadratic terms \ll 1 , so we can neglect them:

$$
\begin{aligned}
& r_{01}=\sqrt{z^{2}+\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}} \approx z\left[1+\left(x_{0}-x_{1}\right)^{2} / 2 z^{2}+\left(y_{0}-y_{1}\right)^{2} / 2 z^{2}\right] \\
& k r_{01} \approx k z+k\left(x_{0}^{2}-2 x_{0} x_{1}+x_{1}^{2}\right) / 2 z+k\left(y_{0}^{2}-2 y_{0} y_{1}+y_{1}^{2}\right) / 2 z
\end{aligned}
$$

 these terms. y_{0}, so factor these out.

$$
E\left(x_{1}, y_{1}\right)=\frac{\exp (i k z)}{i \lambda z} \exp \left[i k \frac{x_{1}^{2}+y_{1}^{2}}{2 z}\right] \iint_{A\left(x_{0}, y_{0}\right)} \exp \left\{-\frac{i k}{z}\left(x_{0} x_{1}+y_{0} y_{1}\right)\right\} E\left(x_{0}, y_{0}\right) d x_{0} d y_{0}
$$

This condition means going a distance away: $z \gg k D^{2} / 2=\pi D^{2} / \lambda$ If $D=1 \mathrm{~mm}$ and $\lambda=1 \mu m$, then $z \gg 3 \mathrm{~m}$.

Fraunhofer Diffraction

We'll neglect the phase factors, and we'll explicitly write the aperture function in the integral:
$E\left(x_{1}, y_{1}\right) \propto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{-\frac{i k}{z}\left(x_{0} x_{1}+y_{0} y_{1}\right)\right\} A\left(x_{0}, y_{0}\right) E\left(x_{0}, y_{0}\right) d x_{0} d y_{0}$
This is just a Fourier Transform!
$E\left(x_{0}, y_{0}\right)=$ constant if a plane wave

Interestingly, it's a Fourier Transform from position, x_{0}, to another position variable, x_{1} (in another plane). Usually, the Fourier "conjugate variables" have reciprocal units (e.g., $t \& \omega$, or $x \& k$). The conjugate variables here are really x_{0} and $k_{x}=k x_{1} / z$, which have reciprocal units.

So the far-field light field is the Fourier Transform of the apertured field!

The Fraunhofer Diffraction formula

We can write this result in terms of the off-axis k-vector components:

$$
E\left(k_{x}, k_{y}\right) \propto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[-i\left(k_{x} x+k_{y} y\right)\right] A(x, y) E(x, y) d x d y
$$

where we've dropped the subscripts, 0 and 1,

$$
E\left(k_{x}, k_{y}\right) \propto \mathscr{Y}\{A(x, y) E(x, y)\}
$$

and:

$$
k_{x}=k x_{1} / z \text { and } k_{y}=k y_{1} / z
$$

$$
q_{x}=k_{x} / k=x_{1} / z \text { and } q_{y}=k_{y} / k=y_{1} / z
$$

The Uncertainty Principle in Diffraction!

$$
E\left(k_{x}, k_{y}\right) \propto \mathscr{F}\{A(x, y) E(x, y)\} \quad k_{x}=k x_{1} / z
$$

Because the diffraction pattern is the Fourier transform of the slit, there's an uncertainty principle between the slit width and diffraction pattern width!

If the input field is a plane wave and $\Delta x=\Delta x_{0}$ is the slit width,

$$
\Delta x \Delta k_{x}>1
$$

Or:

$$
\Delta x_{0} \Delta x_{1}>z / k
$$

The smaller the slit, the larger the diffraction angle and the bigger the diffraction pattern!

Fraunhofer Diffraction from a slit

Fraunhofer Diffraction from a slit is simply the Fourier Transform of a rect function, which is a sinc function. The irradiance is then sinc^{2}.

Fraunhofer diffraction from two slits

$$
A\left(x_{0}\right)=\operatorname{rect}\left[\left(x_{0}+a\right) / w\right]+\operatorname{rect}\left[\left(x_{0}-a\right) / w\right]
$$

$$
E\left(x_{1}\right) \propto \mathscr{F}\left\{A\left(x_{0}\right)\right\}
$$

$\propto \operatorname{sinc}\left[w\left(k x_{1} / z\right) / 2\right] \exp \left[+i a\left(k x_{1} / z\right)\right]+$ $\operatorname{sinc}\left[w\left(k x_{1} / z\right) / 2\right] \exp \left[-i a\left(k x_{1} / z\right)\right]$
$E\left(x_{1}\right) \propto \operatorname{sinc}\left(w k x_{1} / 2 z\right) \cos \left(a k x_{1} / z\right)$

Diffraction from one- and two-slit screens

Fraunhofer diffraction patterns

Gaussian Beam - Laser

