Lecture \# Materials to be covered
1 Syllabus, Hydrogen Atom, CM \& Relative Motion,Hydrogenic Systems
2 Atomic units, Radial \& Angular Wave fns, Energy Spectrum1
LABOR DAY3 Hydrogen atom in 2-dimension, Variational Method
4 Spin Orbit interaction, Hyperfine Interaction, Hellman-Feynman Theorem 2
5 N -electron atoms, Electronic configurations7 Diamagnetism and Paramagnetism in atoms3
8 Born-Oppenheimer approximation9 Molecular Orbital theory, H 2 molecule
10 H 2 molecule, Heitler-London approximation 411 Electronic configuration of diatomic molecules
12 Heisenberg Model for H213 REVIEWEXAM 114 Midterm discussion, Bravais lattices, Cubic, FCC, BCC, WS Cell15 Lattice with basis, Hexagonal, HCP, Reciprocal Lattice5
16 Brilloun Zone, X-Ray Diffraction
17 Ewald's construction
18 Structure factor for lattices with a basis 6
19 Bloch's Theorem, Energy Bands
20 Nearly free electron (NFE) model
21 NFE model, Heat capacity, Pauli susc., Landau diamag. 7
22 Metals, Semiconductors, Insulators (Band structure)23 Electrical Conductivity and Classical Hall effect in NFE model24 Tight binding model in 1d825 Tight binding model in 2d and 3d26 Lattice Vibrations, Acoustic and Optic modes27 REVIEW
EXAM2
28 Midterm Discussion
29 Quantization of lattice vibrations, phonons 9
30 Einstein model of specific heat31 Debye model of specific heat32 Plasmons, Polaritons, and Polarons10

Nov 23-Wed	34 Optical processes and Excitons
Nov 25-Fri	THANKS GIVING
Nov 28-Mon	35 Optical processes and Excitons
Dec 2-Fri	36 Ferromagnetism and Antiferromagnetism
Dec 5-Mon	37 Superconductivity
Dec 7-Wed	38 Superconductivity
Dec 9-Mon	38 REVIEW
Dec 12-Mon	FINAL
	EXAMINATION

